【Wilcoxon 检验】威尔科克森秩检验[非参数检验]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在统计推断的世界中,我们常常需要对数据进行假设检验,以验证我们对总体的一些猜想。传统的参数检验,例如t检验和方差分析,依赖于数据满足一定的分布假设,如正态性。然而,现实世界的数据往往并不那么完美,经常会偏离正态分布,甚至缺乏足够的测量尺度(例如,只有排序信息)。在这种情况下,非参数检验就显得尤为重要。威尔科克森秩检验(Wilcoxon Rank-Sum Test,亦称曼-惠特尼U检验)正是非参数检验中的一种,它无需对数据分布做出严格假设,而是利用数据的秩信息进行推断,因此具有更广泛的适用性。

本文将深入探讨威尔科克森秩检验的原理、适用场景、计算方法及其在实际应用中的优势,并探讨其局限性以及与其他非参数检验方法的比较,以期为读者提供一个全面而深入的理解。

一、威尔科克森秩检验的基本原理

威尔科克森秩检验是一种用于比较两个独立样本的非参数检验方法,其目的是检验这两个样本是否来自相同的总体分布。更具体地说,它关注的是两个样本的总体位置是否一致,即两个样本的中心趋势是否存在显著差异。与t检验直接比较两个样本的均值不同,威尔科克森秩检验并不依赖于数据的具体数值,而是基于数据的秩信息。

其核心思想是,如果两个样本来自相同的总体分布,那么它们的数据在混合排序后应该呈现随机分布,即每个样本的数据在总体排序中应该占据大致均匀的位置。如果两个样本来自不同的总体分布,例如,一个样本的总体位置明显高于另一个样本,那么该样本的数据在混合排序后将会集中在排序的较高端。

威尔科克森秩检验通过计算一个统计量,该统计量基于两个样本数据在混合排序后的秩和。如果这个统计量的值偏离了在零假设(即两个样本来自相同总体分布)下的期望值,就表明两个样本的总体位置可能存在差异,从而拒绝零假设。

二、威尔科克森秩检验的适用场景

威尔科克森秩检验的适用场景相对广泛,特别是在以下情况下,它比传统的参数检验更为合适:

  • 数据不满足正态分布假设:

     当数据明显偏离正态分布,或者无法确定数据是否服从正态分布时,威尔科克森秩检验是更稳健的选择。

  • 数据只有排序信息:

     如果数据只能提供排序信息,而没有具体的数值,例如,对产品进行满意度排序,或者对疾病严重程度进行分级,威尔科克森秩检验是唯一可行的选择。

  • 小样本量:

     在样本量较小的情况下,很难判断数据是否服从正态分布,即使数据确实服从正态分布,t检验的效力也可能受到影响。此时,威尔科克森秩检验通常能提供更可靠的结果。

  • 异常值:

     威尔科克森秩检验对异常值不太敏感,因为它是基于数据的秩信息,而不是具体数值。异常值对秩的影响相对较小,因此即使存在异常值,威尔科克森秩检验也能提供更稳健的结果。

三、’威尔科克森秩检验相比于参数检验,具有以下显著优势:

  • 稳健性:

     对数据分布没有严格要求,即使数据不服从正态分布,也能提供可靠的结果。

  • 适用性:

     可以处理排序数据,适用于无法获得具体数值的数据。

  • 对异常值不敏感:

     异常值对秩的影响较小,因此即使存在异常值,也能提供更稳健的结果。

  • 易于理解和应用:

     计算方法相对简单,容易理解和应用。

四、威尔科克森秩检验的局限性

尽管威尔科克森秩检验具有诸多优点,但也存在一些局限性:

  • 信息损失:

     由于只利用了数据的秩信息,而忽略了数据的具体数值,因此可能会造成信息损失,导致检验效力降低。尤其是在数据接近正态分布时,t检验通常比威尔科克森秩检验更有效力。

  • 对样本量要求:

     虽然威尔科克森秩检验适用于小样本量,但如果样本量过小,则可能难以检测到显著差异。

  • 只关注总体位置:

     威尔科克森秩检验主要关注的是两个样本的总体位置是否一致,而不能用于检验其他类型的差异,例如方差差异。

五、与其他非参数检验方法的比较

除了威尔科克森秩检验之外,还有许多其他的非参数检验方法,例如:

  • 符号检验:

     用于检验配对样本的差值的中位数是否为零。

  • 克鲁斯卡尔-沃利斯检验:

     用于比较三个或三个以上独立样本的总体位置是否一致。

  • 弗里德曼检验:

     用于检验多个相关样本的总体位置是否一致。

选择哪种非参数检验方法,取决于数据的类型、样本的特点以及研究的目的。

六、实际应用举例

例如,研究人员想比较两种教学方法对学生成绩的影响。他们随机将学生分成两组,分别采用两种教学方法进行教学,然后对学生进行测试,得到学生的成绩。然而,研究人员发现,学生的成绩并不服从正态分布,因此不能使用t检验。此时,他们可以使用威尔科克森秩检验来比较两种教学方法的效果。

具体步骤如下:

  1. 将两组学生的成绩合并,并按照从小到大的顺序进行排序。

  2. 计算两组学生的秩和。

  3. 根据秩和计算威尔科克森秩检验的统计量或曼-惠特尼U统计量。

  4. 计算P值。

  5. 根据P值判断两种教学方法的效果是否存在显著差异。

七、结论

总而言之,威尔科克森秩检验是一种重要的非参数检验方法,它无需对数据分布做出严格假设,而是利用数据的秩信息进行推断,因此具有更广泛的适用性。在数据不满足正态分布假设、数据只有排序信息、样本量较小或存在异常值的情况下,威尔科克森秩检验是比传统的参数检验更为合适的选择。然而,我们也应该认识到其局限性,例如信息损失和只关注总体位置,并在选择检验方法时综合考虑各种因素,以选择最合适的统计方法。掌握威尔科克森秩检验及其应用,能够帮助研究人员更有效地分析数据,从而得出更准确的结论。

⛳️ 运行结果

🔗 参考文献

[1] 王文周,仇勇,周骏.国有与非国有承包商在细分行业中优势比较研究[J].项目管理技术, 2013(2):4.DOI:CNKI:SUN:XMGJ.0.2013-02-018.

[2] 常悦.上市公司审计委员会与公司治理关系的实证研究[D].浙江大学,2007.DOI:CNKI:CDMD:2.2007.071060.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值