-
模型结构的改进:
- 引入CPA-Enhancer链式思考网络,这是一种自适应增强器,用于在未知退化条件下提升物体检测性能。CPA-Enhancer通过链式思考提示机制,对图像退化进行动态分析和适应,从而显著提高检测效果,特别是在低照度、图像去雾、雨天和雪天等复杂环境下。
-
训练技巧的提升:
- 采用Random Erase方法,即用随机值或训练集的平均像素值替换图像的部分区域,以增加模型的泛化能力。
- 使用Self-adversarial-training(SAT),通过引入噪音点来增加训练难度,帮助模型学习更鲁棒的特征。
- 应用DropBlock策略,与传统的dropout不同,DropBlock会随机丢弃图像中的一个连续区域,而不是单独的像素点,这有助于模型学习更全面的特征表示。
- 利用Label Smoothing技术,通过软化标签来防止模型过拟合。例如,将原本的硬标签0或1替换为0.95和0.05等软标签。
-
超参数的调整:
- 调整学习率,可以采用学习率衰减的策略来优化训练过程。在训练初期使用较大的学习率以加速收敛,在训练后期减小学习率以细化模型参数。
- 调整批大小(batch size),以找到适合当前计算资源和训练需求的最佳值。
- 根据具体任务和数据集调整输入图像尺寸,以平衡检测精度和速度。
-
损失函数的优化:
- 使用CIOU损失函数,它是一种改进的IOU损失函数,考虑了重叠面积、中心点距离和长宽比等因素,以更准确地衡量预测框与真实框之间的差异。
-
后处理技巧的提升:
- 采用SOFT-NMS(非极大值抑制)策略来改进传统的NMS方法。SOFT-NMS在删除冗余边界框时考虑了框之间的置信度得分差异,从而保留了更多有用的检测信息。
综上所述,YOLOv5的优化方法涵盖了模型结构、训练技巧、超参数调整、损失函数和后处理技巧等多个方面。这些优化措施共同提高了YOLOv5在目标检测任务中的性能和准确性。