【Yolov5】Yolov5添加ASFF, 网络改进优化

文章介绍了如何在Yolov5中添加ASFF(AdaptiveSpatialFeatureFusion)模块以增强特征提取能力,详细提供了修改Yolov5模型的步骤,包括在common.py和yolo.py文件中添加相关代码,并创建新的配置文件yolov5s-ASFF.yaml。尽管实验结果显示ASFF仅将mAP提升了1%,但增加了网络复杂性和资源消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀🚀🚀 Yolov5添加ASFF🚀🚀🚀

前言

Yolov5是单阶段目标检测算法的一种,网上有很多改进其性能的方法,添加ASFF模块就是其中一种,但是ASFF本身是用于Yolov3的,在v5中无法直接应用,且网上许多博客都是介绍这个模块的原理,没有直接可以应用的代码程序,我这里提供一种方案,如果有什么错误或理解不到位的地方,欢迎评论区指正。


一、ASFF来源及功能

ASFF:Adaptively Spatial Feature Fusion (自适应空间特征融合)
论文来源:Learning Spatial Fusion for Single-Shot Object Detection
代码地址:ASFF

关于ASFF的功能,在网络中所起到的作用,网上已有许多博客,这里不再多说,可以参考以下几位博主的博文:

个人的理解,ASFF就是对特征图金字塔的每一张图片进行卷积、池化等处理提取权重,然后在作用在某一层上,试图利用另外两层的信息来改善指定层次的特征提取能力。

但是在作者实验后发现,加入ASFF模块后,mAP值仅仅从原始网络的92.8%提高到93.8%。然而网络的参数量却翻了一倍达到1200万+,训练时的显存消耗、训练时间也多了不少,感觉有点得不偿失☹️。


提示:下面给出我所用的ASFF代码以及如何在Yolov5/6.0中使用

二、ASFF代码

这里的代码我结合yolov5的网络结构进行过修改,所以会与原代码不同.

第一步,在models/common.py文件最下面添加下面的代码:

def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
    """
    Add a conv2d / batchnorm / leaky ReLU block.
    Args:
        in_ch (int): number of input channels of the convolution layer.
        out_ch (int): number of output channels of the convolution layer.
        ksize (int): kernel size of the convolution layer.
        stride (int): stride of the convolution layer.
    Returns:
        stage (Sequential) : Sequential layers composing a convolution block.
    """
    stage = nn.Sequential()
    pad = (ksize - 1) // 2
    stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
                                       out_channels=out_ch, kernel_size=ksize, stride=stride,
                                       padding=pad, bias=False))
    stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
    if leaky:
        stage.add_module('leaky', nn.LeakyReLU(0.1))
    else:
        stage.add_module('relu6', nn.ReLU6(inplace=True))
    return stage


class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        # 特征金字塔从上到下三层的channel数
        # 对应特征图大小(以640*640输入为例)分别为20*20, 40*40, 80*80
        self.dim = [512, 256, 128]
        self.inter_dim = self.dim[self.level]
        if level==0: # 特征图最小的一层,channel数512
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 512, 3, 1)
        elif level==1: # 特征图大小适中的一层,channel数256
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)
        elif level==2: # 特征图最大的一层,channel数128
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.compress_level_1 = add_conv(256, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 128, 3, 1)

        compress_c = 8 if rfb else 16  #when adding rfb, we use half number of channels to save memory

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0)
        self.vis= vis


    def forward(self, x_level_0, x_level_1, x_level_2):
        if self.level==0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level==1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized =x_level_1
            level_2_resized =self.stride_level_2(x_level_2)
        elif self.level==2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')
            level_1_compressed = self.compress_level_1(x_level_1)
            level_1_resized =F.interpolate(level_1_compressed, scale_factor=2, mode='nearest')
            level_2_resized =x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized)
        level_1_weight_v = self.weight_level_1(level_1_resized)
        level_2_weight_v = self.weight_level_2(level_2_resized)
        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
                            level_1_resized * levels_weight[:,1:2,:,:]+\
                            level_2_resized * levels_weight[:,2:,:,:]

        out = self.expand(fused_out_reduced)

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out

二、ASFF融合Yolov5网络

第二步,在models/yolo.py文件的Detect类下面添加下面的类(我的是在92行加的)

class ASFF_Detect(Detect):
    # ASFF model for improvement
    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__(nc, anchors, ch, inplace)
        self.nl = len(anchors)
        self.asffs = nn.ModuleList(ASFF(i) for i in range(self.nl))
        self.detect = Detect.forward

    def forward(self, x): # x中的特征图从大到小,与ASFF中顺序相反,因此输入前先反向
        x = x[::-1]
        for i in range(self.nl):
            x[i] = self.asffs[i](*x)
        return self.detect(self, x[::-1])

第三步,在有yolo.py这个文件中,出现 Detect, Segment这个代码片段的地方加入ASFF_Detect,例如我的177行中改动后变成:
在这里插入图片描述
一共会改三处类似的地方,我的分别是177,211,353行。

三、构建使用ASFF的网络

第四步,在models文件夹下新创建一个文件,命名为yolov5s-ASFF.yaml,然后把下面的内容粘贴上去:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, ASFF_Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

四、查看效果

第五步,在终端中输入命令:
python models/yolo.py --cfg=yolov5s-ASFF.yaml
运行后可以看到我们修改后的模型就被打印出来了:
在这里插入图片描述
后续训练也是按照原模型的流程进行。

如果觉得本文对你有帮助,不妨动动小手点个赞,你的三连是作者更新的最大动力😊🌹

最后添加一下本文代码的仓库地址(可能有些许差异):https://gitee.com/inavacuum/yolov5_modified

### ASFF模块介绍 自适应空间特征融合(Adaptive Spatial Feature Fusion, ASFF)是一种用于提升目标检测模型性能的技术。该技术使得网络可以学习如何在不同的特征层次上进行有效的空间过滤,从而仅保留有用的信息进行组合[^4]。 具体来说,在每一层的特征处理过程中,来自其他层的特征会被融合并调整至相同的空间分辨率。随后,通过训练过程来获得最佳的特征融合方式。这种机制允许在同一空间位置上的不同层次特征之间实现自适应融合:一些携带冲突信息的特征将被自动过滤掉;相反,那些具有更强辨别力的特征会占据主导地位。 ### 使用方法 为了定义ASFF模块并将其实现于YOLOv8架构中,以下是具体的实践指南: #### 实现动态特征融合和注意力机制 ```python import torch.nn as nn class ASFF(nn.Module): def __init__(self, level=0, multiplier=1.0): super().__init__() self.level = level # 动态权重计算部分... def forward(self, features_list): # 特征融合逻辑... pass ``` 这段代码展示了`ASFF`类的基本框架,其中包含了初始化函数以及前向传播路径中的核心操作——即接收一个多尺度特征列表作为输入,并返回经过优化后的单个输出张量[^1]。 #### 构建 `ASFFYOLOv8Head` 类 接下来是创建一个新的头部组件(`ASFFYOLOv8Head`),它继承自原始版本的同时引入了上述提到的`ASFF`模块: ```python from yolov8.models.heads import YOLOv8Head class ASFFYOLOv8Head(YOLOv8Head): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # 初始化ASFF实例... def forward(self, x): # 首先获取backbone提取出来的多尺度特征图 feats = backbone(x) # 应用ASFF模块来进行跨尺度特征融合 fused_feat = self.asff_module(feats) # 将融合后的特征传递给后续的标准YOLO head结构继续处理 out = super().forward(fused_feat) return out ``` 此段代码说明了如何修改原有的YOLO v8头部设计以支持新的特性融合策略。这里的关键在于利用之前定义好的`ASFF`对象对由骨干网产生的多个尺度下的特征表示进行了增强型聚合。 ### 性能对比 实验结果显示,当采用Yolov3加上改进版的ASFF模块之后,在多种评估指标方面均优于传统的单一阶段(one-stage)和两阶段(two-stage)的目标检测方案[^3]。
评论 63
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值