图像处理(八)

### 课件内容详细讲解

### 上周回顾
- 分类
- 神经网络和树的介绍

### 本周内容
- 更多关于深度学习的内容
- 其他先进技术:SIFT(尺度不变特征变换)

### VGG网络
- VGG网络具有卷积层(conv2d层)和最大池化层(maxpooling层),这些层作为过滤器使用。全连接网络(蓝色部分)执行实际的分类任务。
- VGG网络在图像分类时效果比全连接网络更好。层数越多,结果越好,但到某个点后性能会开始下降。

### 深度学习网络设计
- 需要新的网络设计,如Inception、ResNet、DenseNet等。

#### Inception v1 / GoogLeNet
- 处理图像中的显著部分时,尺寸变化可能非常大(如不同图像中狗所占的面积不同)。
- 为了解决这个问题,Inception模块在同一层次上操作多个尺寸的滤波器,网络变得“更宽”而不是“更深”。
- 朴素的Inception模块对输入进行卷积,使用三种不同尺寸的滤波器(1x1, 3x3, 5x5),并进行最大池化,然后将输出连接并传递给下一个Inception模块。

#### Inception改进
- 为了降低计算成本,作者通过在3x3和5x5卷积之前添加额外的1x1卷积来限制输入通道的数量。1x1卷积比5x5卷积便宜得多,并减少了输入通道的数量,有助于降低过拟合。

#### ResNet(残差网络)
- ResNet通过引入“身份快捷连接”解决停滞问题,允许跳过一层或多层。
- 这种方法使得堆叠层不会降低网络性能,可以创建非常深的网络,运行效果良好。

### 梯度下降算法变体
- 梯度下降:传递整个数据集,找到所有样本的误差率并更新权重,最准确但需要大量内存。
- 随机梯度下降(SGD):每传递一个数据样本就更新权重,更快但不太准确。
- 批量梯度下降:在每个批次后更新权重,是前两种方法的折中。

### 过拟合
- 过拟合是一个潜在问题,但可以在训练阶段识别。通过在训练数据和验证数据上的性能差距来判断。
- 解决过拟合的方法包括增加训练数据、改进模型(如减少层数、提前停止训练、添加dropout层和batchnorm层)。

### Dropout层和批量标准化
- Dropout层:在训练期间随机忽略一些层的输出,使网络更像不同的层,减少过拟合。
- 批量标准化:在神经网络层之间标准化数据,加速训练并使用更高的学习率,减少协变量偏移。

### 迁移学习
- 迁移学习用于避免从头开始训练模型。使用预训练的网络(如VGG),移除最终的全连接层(分类器),冻结其他权重并添加新的全连接层,在新数据集上重新训练。

### YOLO(You Only Look Once)
- YOLO是一种常见的物体检测方法,快速且准确。
- YOLO将输入图像划分为S×S网格,如果对象的中心落入网格单元中,则该网格单元负责检测该对象。每个网格单元预测B个边界框和这些框的置信度分数,并预测条件类概率。

### 其他应用
- 生成对抗网络(GAN)
- 人脸检测(单次检测)
- 人体姿势估计
- 超分辨率
- 图像着色
- 活动识别
- 追踪(下一周讨论)
- 细分(下一周讨论)

### SIFT(尺度不变特征变换)
- SIFT用于匹配图像中的显著特征,而不是匹配整个对象。通过定位图像中的关键点,并对其进行度量来实现。关键点在旋转、缩放、移动和仿射变换后仍能保持稳定。

### 结论
- 深度学习正在积极研究中,可以取得出色的成果。
- SIFT不需要大型训练集,运行速度更快,通常比相关性方法效果更好,是许多先进方法的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值