### 课件内容详细讲解
### 第一部分:对象计数和标记
#### 问题描述
- 如何确定图像中对象的数量,例如下面图像中的大米。
#### 简单的方法:二元阈值法
- SIFT、深度学习和相关性可能太复杂。
- 最简单的方法是二元阈值法,可以先尝试这种方法。
#### 步骤
1. **去噪图像**:使用高斯卷积或中值运算符去除噪声。
2. **分割图像**:将图像分割为前景和背景。
3. **校正光照变化**:使用形态学算子(侵蚀)估计背景,去除图像中的明亮物体。
4. **给每个对象一个标签**:检查每个对象的属性,移除小物体、大物体和形状错误的物体。
5. **计数**:剩余标签的数量即为对象的数量。
### 第二部分:图像配准
#### 图像配准概述
- 将同一场景的两幅或多幅图像组合成一个坐标系的过程。
- 用途包括组合照片、结合医学图像和映射。
#### 方法
1. **指定参考图像**:将一个图像指定为参考图像,应用空间变换矩阵将其他图像与参考图像对齐。
2. **方法选择**:
- 如果图像只是移位,可以使用相关性。
- 如果有少量旋转和缩放,可以采用迭代技术。
- 如果有更大的变化,使用控制点或关键点匹配(SIFT)。
#### 控制点法
- 选择两个图像中的控制点,根据控制点计算变换矩阵,执行空间变换,将新图像变换到基础图像坐标上。
#### 自动选择控制点
- 使用SIFT找到多个控制点,减少错误匹配的方法是随机选择一小部分匹配项,衡量它们的拟合程度,重复多次,选择最佳拟合集。
### 第三部分:地平面估计
#### 估计物体距离
- 假设地面是平坦的,相机高度固定。
- 知道地面上四个物体的真实位置及其在图像中的位置,可以制作从图像坐标到现实世界的投影矩阵。
- 定位图像中的物体,计算其离相机的距离。
### 第四部分:深度学习分割
#### 实例分割
- 使用深度学习网络,通过识别实际物体来分割图像。
- 训练集如MS COCO,需要大量手动标注的图像。
#### 网络设计
- 简单的方法是堆叠卷积层并输出与输入图像相同大小的最终分割图。使用自动编码器找到从一个空间映射到另一个空间的函数。
- 使用反向VGG19 CNNs的SegNet结构。
#### 实时应用
- 例如自动驾驶中的实时道路场景分割,通过RGB彩色图像输出每个像素包含类标签的分割图。
### 结论
- 对象标签
- 图像配准和拼接
- 深度学习分割