中药类数据可视化

本文使用Python的numpy和matplotlib库,展示了2014-2023年中国中医类医疗卫生机构的诊疗量变化、各年龄段消费者比例、药店中药饮片供应商占比以及药品销售额的雷达图。数据通过柱状图、饼图和极坐标图进行可视化展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt
# 0.【设置中文字体】
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 1.1 准备数据
year_x = np.arange(2014, 2022, 1)  # X轴刻度值(2014-2021)
data_num = np.array([87430, 90912, 96225, 101885, 107147, 116390, 105764, 120215])  # 诊疗量
data_speed = np.array([7.40, 4.00, 5.83, 5.81, 5.16, 8.63, -9.13, 13.66])  # 同比增速

# 1.2 创建第一个坐标系实例
ax = plt.subplot2grid((2, 3), (0, 0), colspan=3)
# 1.3 在第一个坐标系实例上绘制堆积柱形图
bar = ax.bar(year_x, data_num, width=0.5, color='orange')

# 1.4 创建共享x轴的第二个坐标系实例
ax_right = ax.twinx()
# 1.5 在第二个坐标系实例绘制折线图
line = ax_right.plot(year_x, data_speed, 'm^-')

# 1.6 图表辅助元素定制
ax.set_ylabel('诊疗量 (万人次)')
ax_right.set_ylim(-20, 20)
ax_right.set_ylabel('同比增速(%)')
ax.set_title('2014-2021年中国中医类医疗卫生机构诊疗量')
# 2.1 准备数据
ratios = [2.2, 27.9, 56.2, 10.9, 2.8]  # 各年龄段用户比例
labels = ['20岁以下', '20-30岁', '31-40岁', '41-50岁', '51岁以上']  # 外侧说明文字

# 2.2 创建坐标系实例并绘制饼图
ax2 = plt.subplot2grid((2, 3), (1, 0))
ax2.pie(ratios, labels=labels, radius=1.5,
        textprops={'fontsize': 6},  # 表示控制图表中文本属性的字典
        wedgeprops={'width': 0.75},  # 表示控制扇形或楔形的属性的字典
        pctdistance=0.75,  # 调整数值标签的位置
        autopct='%3.1f%%',  # 控制扇形或楔形的数值显示的字符串
        startangle=0)  # 调整购物品类的位置

# 2.3 图表辅助元素定制
ax2.set_title('中药材消费者画像', fontsize=8, pad=20)
# 3.1 准备数据
year_x = np.arange(2019, 2024, 1)  # X轴刻度值(2019-2023)
data2 = np.array([79.7, 78.0, 76.5, 77.5, 77.7])  # 本土企业占比
data1 = np.array([20.3, 22.0, 23.5, 22.5, 22.3])  # 跨国企业占比
xlabels = ['2019年', '2020年', '2021年', '2022年', '2023年']

# 3.2 创建坐标系实例并绘制堆积柱形图
ax3 = plt.subplot2grid((2, 3), (1, 1))
bar_width = 0.5  # 柱宽
ax3.bar(year_x, data1, width=bar_width)
ax3.bar(year_x, data2, bottom=data1, width=bar_width)

# 3.3 图表辅助元素定制
ax3.set_title('全国药店中药饮片供应商占比', fontsize=6)
ax3.set_xticks(year_x)
ax3.set_xticklabels(xlabels, rotation=60, fontsize=8)
# 4.1 准备数据
score = np.array([33, 45, 3, 9, 10])  # 各品类药品占比
score = np.concatenate((score, [score[0]]))  # 拼接一下,构成闭环

radar_labels = ['化学药', '中成药', '生物制品', '保健品', '中药饮片']  # 维度标签
radar_labels = np.concatenate((radar_labels, [radar_labels[0]]))  # 拼接一下,构成闭环 (此处可以不拼接,为了统一而已)

dim_num = len(score) - 1  # 维度数 (因为前面拼接了一下,所以要减1)
radians = np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
radians = np.concatenate((radians, [radians[0]]))  # 拼接一下,构成闭环

# 4.2 创建极坐标系实例,并绘制雷达图
ax4 = plt.subplot2grid((2, 3), (1, 2), polar=True)
ax4.plot(radians, score, marker='o',
         markersize=2, linewidth=1, color='r')

# 4.3 图表辅助元素定制
# 设置极坐标的标签
angles = radians * 180 / np.pi  # 弧度转角度
ax4.set_thetagrids(angles, labels=radar_labels, fontsize=6)  # 设置新的刻度标签
# 填充多边形
ax4.fill(radians, score, alpha=0.2)
ax4.set_title('全国药店药品销售额占比', fontsize=8, pad=20)
plt.tight_layout() # 启用自动紧凑布局
plt.show()
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于知识图谱的中药方剂可视化及问答系统源码+项目说明.zip # 项目目录 1) app.py是整个系统的主入口<br> 2) templates文件夹是HTML的页面<br>  |——index.html 欢迎界面<br>  |——search.html 搜索处方关系页面<br>  |——all_relation.html 所有处方关系页面<br>  |——KGQA.html 处方问答页面<br> 3) static文件夹存放css和js,是页面的样式和效果的文件<br> 4) raw_data文件夹是存在数据处理后的三元组文件<br> 5) neo_db文件夹是知识图谱构建模块<br>  |——config.py 配置参数<br>  |——create_graph.py 创建知识图谱,图数据库的建立<br>  |——query_graph.py 知识图谱的查询<br> 6) KGQA文件夹是问答系统模块<br>  |——ltp.py 分词、词性标注、命名实体识别<br> 7) spider文件夹是爬虫模块<br>  |——get_*.py 是之前爬取人物资料的代码,已经产生好images和json 可以不用再执行<br>  |——show_profile.py 是调用处方资料和图谱展示在前端的代码 <hr> # 部署步骤:<br> * 0.安装所需的库 执行pip install -r requirement.txt<br> * 1.先下载好neo4j图数据库,并配好环境。修改neo_db目录下的配置文件config.py,设置图数据库的账号和密码。<br> * 2.切换到neo_db目录下,执行python create_graph.py 建立知识图谱<br> * 3.在spider目录下,运行data_process.py(已处理好)<br> * 4.在static目录下,运行neo2json.py(已处理好)<br> * 5.去[这里](http://pyltp.readthedocs.io/zh_CN/latest/api.html#id2)下载好ltp模型。[ltp简介](http://ltp.ai/)<br> * 6.在KGQA目录下,修改ltp.py里的ltp模型文件的存放目录<br> * 7.运行python app.py,浏览器打开localhost:5000即可查看<br> .......
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值