Mobile ALOHA项目 ACT算法学习

ACT的原理解析:斯坦福炒虾机器人Moblie Aloha的动作分块算法ACT_act算法-CSDN博客

学习文章如上

主要阐述ACT的算法原理

动作分块:将同一时间步内的预测动作进行聚合

为了以一种与像素到动作策略兼容的方式来解决模仿学习中的复合错误,寻求减少高频收集的长轨迹的有效视域。这通过k折减少了任务的有效视界,减轻了复合误差。

  单步策略将对抗与时间相关的干扰因素,例如人类演示的过程中间出现暂停 ,因为行为不仅取决于状态还取决于时间步长。通过采用动作分块方法可以缓解这种混淆。这样做可以使不同的动作块相互重叠,在给定的时间步长上产生多个预测动作.

总结:动作分块就是把完整运动轨迹的运动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值