1-18 平滑处理——高斯滤波 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

cv2.GaussianBlur函数用于对图像进行高斯滤波。高斯滤波是一种平滑图像的技术,用于减少噪声和细节。函数的三个参数如下:

三、运行结果

四、完整工程贴出


一、提前准备

        1、树莓派4B 及 64位系统

        2、提前安装opencv库 以及 numpy库

        3、保存一张图片

二、代码详解

import cv2
 
# 读取图像
img = cv2.imread('/home/raspberry4B/Pictures/MD.jpg')
 
# 进行高斯滤波
filtered_img = cv2.GaussianBlur(img, (5, 5), 0)
 
# 显示原图和滤波后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Filtered Image', filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.GaussianBlur函数用于对图像进行高斯滤波。高斯滤波是一种平滑图像的技术,用于减少噪声和细节。函数的三个参数如下:

  • img:输入图像。
  • (5, 5):表示高斯滤波器的内核大小。这里的 (5, 5) 是一个 5x5 的内核,表示滤波器将考虑每个像素周围 5x5 的区域。内核大小必须是正奇数。
  • 0:表示高斯内核的标准差。在这种情况下,0 表示标准差由内核大小自动计算。如果指定非零值,则使用该值作为标准差。

三、运行结果

四、完整工程贴出

持续更新中……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Serial number V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值