斐波那契数列求解

Date: 10/8 TUE

一、问题描述

一对初生的雌雄兔子自第二个月起每个月生出一对雌雄兔子,第一个月只有一对兔子。问:第 n n n 个月后有多少兔子?

二、SOLUTION:

1、递推关系:

设满 n n n 个月时有 F n F_n Fn 对兔子。
F n = F n − 1 + F n − 2 F 1 = F 2 = 1 F_n=F_{n-1}+F_{n-2}\\ F_1=F_2=1 Fn=Fn1+Fn2F1=F2=1
⟹ F 3 = 2 F 4 = 3 F 5 = 5 \Longrightarrow F_3=2\quad F_4=3\quad F_5=5 F3=2F4=3F5=5

2、一些性质

1.   F 1 + F 2 + ⋯ + F n = F n + 2 − 1 ; 2.   F 1 + F 3 + F 5 + ⋯ + F 2 n − 1 = F 2 n ; 3.   F 0 − F 1 + F 2 − F 3 + ⋯ − F 2 n − 1 + F 2 n = F 2 n − 1 − 1 ; 4.   F 1 2 + F 2 2 + ⋯ + F n 2 = F n F n + 1 ; 5.   F n − 1 F n + 1 − F n 2 = ( − 1 ) n ; 6.   F n 2 + F n − 1 2 = F 2 n − 1 ; 7.   F n + 1 F n + F n F n − 1 = F 2 n . \begin{aligned}&1.\:F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1;\\&2.\:F_{1}+F_{3}+F_{5}+\cdots+F_{2n-1}=F_{2n};\\&3.\:F_{0}-F_{1}+F_{2}-F_{3}+\cdots-F_{2n-1}+F_{2n}=F_{2n-1}-1;\\&4.\:F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n}F_{n+1};\\&5.\:F_{n-1}F_{n+1}-F_{n}^{2}=(-1)^{n};\\&6.\:F_{n}^{2}+F_{n-1}^{2}=F_{2n-1};\\&7.\:F_{n+1}F_{n}+F_{n}F_{n-1}=F_{2n}.\end{aligned} 1.F1+F2++Fn=Fn+21;2.F1+F3+F5++F2n1=F2n;3.F0F1+F2F3+F2n1+F2n=F2n11;4.F12+F22++Fn2=FnFn+1;5.Fn1Fn+1Fn2=(1)n;6.Fn2+Fn12=F2n1;7.Fn+1Fn+FnFn1=F2n.

Proof of 5

base case: 成立

**induction on n: **
F n − 1 F n + 1 − F n 2 = F n − 1 ( F n − 1 + F n ) − F n 2 = F n − 1 2 + F n ( F n − 1 − F n ) = F n − 1 2 − F n F n − 2 = ( − 1 ) n \begin{align} F_{n-1}F_{n+1}-F_n^2&=F_{n-1}(F_{n-1}+F_n)-F_n^2\\ &=F_{n-1}^2+F_n(F_{n-1}-F_n)\\ &=F_{n-1}^2-F_nF_{n-2}\\ &=(-1)^n \end{align} Fn1Fn+1Fn2=Fn1(Fn1+Fn)Fn2=Fn12+Fn(Fn1Fn)=Fn12FnFn2=(1)n

Proof:

∙   F n 2 + F n − 1 2 = F 2 n − 1 ; ∙   F n + 1 F n + F n F n − 1 = F 2 n . \begin{aligned}&\bullet\:{F_{n}}^{2}+{F_{n-1}}^{2}=F_{2n-1};\\&\bullet\:F_{n+1}F_{n}+F_{n}F_{n-1}=F_{2n}.\\&\end{aligned} Fn2+Fn12=F2n1;Fn+1Fn+FnFn1=F2n.

Also use induction on n. F n + 1 F n + F n F n − 1 = ( F n + F n − 1 ) F n + ( F n − 1 + F n − 2 ) F n − 1 = F n 2 + F n − 1 2 + F n F n − 1 + F n − 1 F n − 2 = F 2 n − 1 + F 2 n − 2 = F 2 n \begin{align}\text{Also use induction on n.}\\F_{n+1}F_{n}+F_{n}F_{n-1}&=(F_{n}+F_{n-1})F_{n}+(F_{n-1}+F_{n-2})F_{n-1}\\&=F_{n}{}^{2}+F_{n-1}{}^{2}+F_{n}F_{n-1}+F_{n-1}F_{n-2}\\&=F_{2n-1}+F_{2n-2}\\&=F_{2n}\end{align} Also use induction on n.Fn+1Fn+FnFn1=(Fn+Fn1)Fn+(Fn1+Fn2)Fn1=Fn2+Fn12+FnFn1+Fn1Fn2=F2n1+F2n2=F2n

上述证明使用到了第一个关系式。

使用第二个关系式可以证明第一个关系式。

跷跷板归纳法为什么可行?

有两个结论 A A A B B B,如果 A A A 成立则 B B B 成立;如果 B B B 成立则 A A A 成立;

那么在验证base case之后,对于任意 n n n A A A B B B 均成立。

3、通项求解

G n = c q n G_n=cq^n Gn=cqn 满足 KaTeX parse error: {align} can be used only in display mode.

image-20241008111937076

三、modified Fibonacci

E n = F a + n E_n=F_{a+n} En=Fa+n
E n = F n − 1 A + F n B . I f A = F a   a n d   B = F a + 1 ,   t h e n F a + b + 1   ( = E b + 1 ) = F a + 1 F b + 1 + F a F b . \begin{aligned}E_n&=F_{n-1}A+F_nB.\\\mathbf{If}A=F_a\mathrm{~and~}B=F_{a+1},\mathrm{~then}\\F_{a+b+1}\:(=E_{b+1})&=F_{a+1}F_{b+1}+F_{a}F_{b}.\end{aligned} EnIfA=Fa and B=Fa+1, thenFa+b+1(=Eb+1)=Fn1A+FnB.=Fa+1Fb+1+FaFb.
可以推出上面的两个结论。

四、线性代数解

image-20241008102208875

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值