Date: 10/8 TUE
一、问题描述
一对初生的雌雄兔子自第二个月起每个月生出一对雌雄兔子,第一个月只有一对兔子。问:第 n n n 个月后有多少兔子?
二、SOLUTION:
1、递推关系:
设满
n
n
n 个月时有
F
n
F_n
Fn 对兔子。
F
n
=
F
n
−
1
+
F
n
−
2
F
1
=
F
2
=
1
F_n=F_{n-1}+F_{n-2}\\ F_1=F_2=1
Fn=Fn−1+Fn−2F1=F2=1
⟹
F
3
=
2
F
4
=
3
F
5
=
5
\Longrightarrow F_3=2\quad F_4=3\quad F_5=5
⟹F3=2F4=3F5=5
2、一些性质
1. F 1 + F 2 + ⋯ + F n = F n + 2 − 1 ; 2. F 1 + F 3 + F 5 + ⋯ + F 2 n − 1 = F 2 n ; 3. F 0 − F 1 + F 2 − F 3 + ⋯ − F 2 n − 1 + F 2 n = F 2 n − 1 − 1 ; 4. F 1 2 + F 2 2 + ⋯ + F n 2 = F n F n + 1 ; 5. F n − 1 F n + 1 − F n 2 = ( − 1 ) n ; 6. F n 2 + F n − 1 2 = F 2 n − 1 ; 7. F n + 1 F n + F n F n − 1 = F 2 n . \begin{aligned}&1.\:F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1;\\&2.\:F_{1}+F_{3}+F_{5}+\cdots+F_{2n-1}=F_{2n};\\&3.\:F_{0}-F_{1}+F_{2}-F_{3}+\cdots-F_{2n-1}+F_{2n}=F_{2n-1}-1;\\&4.\:F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n}F_{n+1};\\&5.\:F_{n-1}F_{n+1}-F_{n}^{2}=(-1)^{n};\\&6.\:F_{n}^{2}+F_{n-1}^{2}=F_{2n-1};\\&7.\:F_{n+1}F_{n}+F_{n}F_{n-1}=F_{2n}.\end{aligned} 1.F1+F2+⋯+Fn=Fn+2−1;2.F1+F3+F5+⋯+F2n−1=F2n;3.F0−F1+F2−F3+⋯−F2n−1+F2n=F2n−1−1;4.F12+F22+⋯+Fn2=FnFn+1;5.Fn−1Fn+1−Fn2=(−1)n;6.Fn2+Fn−12=F2n−1;7.Fn+1Fn+FnFn−1=F2n.
Proof of 5
base case: 成立
**induction on n: **
F
n
−
1
F
n
+
1
−
F
n
2
=
F
n
−
1
(
F
n
−
1
+
F
n
)
−
F
n
2
=
F
n
−
1
2
+
F
n
(
F
n
−
1
−
F
n
)
=
F
n
−
1
2
−
F
n
F
n
−
2
=
(
−
1
)
n
\begin{align} F_{n-1}F_{n+1}-F_n^2&=F_{n-1}(F_{n-1}+F_n)-F_n^2\\ &=F_{n-1}^2+F_n(F_{n-1}-F_n)\\ &=F_{n-1}^2-F_nF_{n-2}\\ &=(-1)^n \end{align}
Fn−1Fn+1−Fn2=Fn−1(Fn−1+Fn)−Fn2=Fn−12+Fn(Fn−1−Fn)=Fn−12−FnFn−2=(−1)n
Proof:
∙ F n 2 + F n − 1 2 = F 2 n − 1 ; ∙ F n + 1 F n + F n F n − 1 = F 2 n . \begin{aligned}&\bullet\:{F_{n}}^{2}+{F_{n-1}}^{2}=F_{2n-1};\\&\bullet\:F_{n+1}F_{n}+F_{n}F_{n-1}=F_{2n}.\\&\end{aligned} ∙Fn2+Fn−12=F2n−1;∙Fn+1Fn+FnFn−1=F2n.
Also use induction on n. F n + 1 F n + F n F n − 1 = ( F n + F n − 1 ) F n + ( F n − 1 + F n − 2 ) F n − 1 = F n 2 + F n − 1 2 + F n F n − 1 + F n − 1 F n − 2 = F 2 n − 1 + F 2 n − 2 = F 2 n \begin{align}\text{Also use induction on n.}\\F_{n+1}F_{n}+F_{n}F_{n-1}&=(F_{n}+F_{n-1})F_{n}+(F_{n-1}+F_{n-2})F_{n-1}\\&=F_{n}{}^{2}+F_{n-1}{}^{2}+F_{n}F_{n-1}+F_{n-1}F_{n-2}\\&=F_{2n-1}+F_{2n-2}\\&=F_{2n}\end{align} Also use induction on n.Fn+1Fn+FnFn−1=(Fn+Fn−1)Fn+(Fn−1+Fn−2)Fn−1=Fn2+Fn−12+FnFn−1+Fn−1Fn−2=F2n−1+F2n−2=F2n
上述证明使用到了第一个关系式。
使用第二个关系式可以证明第一个关系式。
跷跷板归纳法为什么可行?
有两个结论 A A A B B B,如果 A A A 成立则 B B B 成立;如果 B B B 成立则 A A A 成立;
那么在验证base case
之后,对于任意
n
n
n,
A
A
A
B
B
B 均成立。
3、通项求解
令 G n = c q n G_n=cq^n Gn=cqn 满足 KaTeX parse error: {align} can be used only in display mode.
三、modified Fibonacci
E
n
=
F
a
+
n
E_n=F_{a+n}
En=Fa+n
E
n
=
F
n
−
1
A
+
F
n
B
.
I
f
A
=
F
a
a
n
d
B
=
F
a
+
1
,
t
h
e
n
F
a
+
b
+
1
(
=
E
b
+
1
)
=
F
a
+
1
F
b
+
1
+
F
a
F
b
.
\begin{aligned}E_n&=F_{n-1}A+F_nB.\\\mathbf{If}A=F_a\mathrm{~and~}B=F_{a+1},\mathrm{~then}\\F_{a+b+1}\:(=E_{b+1})&=F_{a+1}F_{b+1}+F_{a}F_{b}.\end{aligned}
EnIfA=Fa and B=Fa+1, thenFa+b+1(=Eb+1)=Fn−1A+FnB.=Fa+1Fb+1+FaFb.
可以推出上面的两个结论。