数学分析(十)-定积分的应用3-1-平面曲线的弧长2-弧长公式3:极坐标系【参数系s=∫ₐᵝ√[x´²(t)+y´²(t)]dt➾极坐标系:s=∫ₐᵝ√[r²(θ)+r´²(θ)]dθ】

本文介绍了平面曲线的弧长计算,基于定理10.1,阐述了如何通过参数方程计算弧长。特别地,当曲线用极坐标方程r(θ)表示时,弧长公式为s=∫αβr²(θ)+r'²(θ)dθ。此公式适用于连续可微的光滑曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

定理 10.1

设曲线 C C C 是一条没有自交点的非闭的平面曲线, 由参数方程

x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] ( 1 ) x=x(t), \quad y=y(t), \quad t \in[\alpha, \beta] \quad\quad(1) x=x(t),y=y(t),t[α,β](1)

给出. 若 x ( t ) x(t) x(t) y ( t ) y(t) y(t) [ α , β ] [\boldsymbol{\alpha}, \boldsymbol{\beta}] [α,β]上连续可微, 则 C C C 是可求长的, 且弧长为

s = ∫ α β [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2   d t . ( 2 ) s=\int_{\alpha}^{\beta} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t .\quad\quad(2) s=αβ[x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值