数学分析(十)-定积分的应用1-平面图形的面积3-2:极坐标方程案例【求:双纽线r²=a²cos2θ所围平面图形的面积】

本文通过数学分析方法探讨了如何使用极坐标方程计算平面图形的面积,以双纽线r²=a²cos2θ为例,详细解说了求解过程,最终得出该双纽线所围图形的面积为a²。

设曲线 CCC 由极坐标方程

r=r(θ),θ∈[α,β]r=r(\theta), \theta \in[\alpha, \beta]r=r(θ),θ[α,β]

给出, 其中:

  • r(θ)r(\theta)r(θ)[α,β][\alpha, \beta][α,β] 上连续
  • β−α⩽2π\beta-\alpha \leqslant 2 \piβα2π

由曲线 CCC 与两条射线 θ=α,θ=β\theta=\alpha, \theta=\betaθ=α,θ=β 所围成的平面图形,通常也称为扇形 (图 10-5). 此扇形的面积计算公式为

A=12∫αβr2(θ)dθ. (5)A=\cfrac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \mathrm{d} \theta \text {. } \quad\quad(5)A=21αβr2(θ)dθ(5)

在这里插入图片描述


例 4
求双纽线 r2=a2cos⁡2θr^{2}=a^{2} \cos 2 \thetar2=a2cos2θ 所围平面图形的面积.
在这里插入图片描述

如图 10-7 所示, 因为 r2⩾0r^{2} \geqslant 0r20, 所以 θ\thetaθ 的取值范围是[−π4,π4]\left[-\cfrac{\pi}{4}, \cfrac{\pi}{4}\right][4π,4π][3π4,5π4]\left[\cfrac{3 \pi}{4}, \cfrac{5 \pi}{4}\right][43π,45π].

由图形的对称性及公式(5), 得到

A=4⋅12∫0π4a2cos⁡2θdθ=a2sin⁡2θ∣0π4=a2.A=4 \cdot \cfrac{1}{2} \int_{0}^{\cfrac{\pi}{4}} a^{2} \cos 2 \theta \mathrm{d} \theta=\left.a^{2} \sin 2 \theta\right|_{0} ^{\cfrac{\pi}{4}}=a^{2} .A=42104πa2cos2θdθ=a2sin2θ04π=a2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值