设曲线 CCC 由极坐标方程
r=r(θ),θ∈[α,β]r=r(\theta), \theta \in[\alpha, \beta]r=r(θ),θ∈[α,β]
给出, 其中:
- r(θ)r(\theta)r(θ) 在 [α,β][\alpha, \beta][α,β] 上连续
- β−α⩽2π\beta-\alpha \leqslant 2 \piβ−α⩽2π
由曲线 CCC 与两条射线 θ=α,θ=β\theta=\alpha, \theta=\betaθ=α,θ=β 所围成的平面图形,通常也称为扇形 (图 10-5). 此扇形的面积计算公式为
A=12∫αβr2(θ)dθ. (5)A=\cfrac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \mathrm{d} \theta \text {. } \quad\quad(5)A=21∫αβr2(θ)dθ. (5)

例 4
求双纽线 r2=a2cos2θr^{2}=a^{2} \cos 2 \thetar2=a2cos2θ 所围平面图形的面积.

解
如图 10-7 所示, 因为 r2⩾0r^{2} \geqslant 0r2⩾0, 所以 θ\thetaθ 的取值范围是[−π4,π4]\left[-\cfrac{\pi}{4}, \cfrac{\pi}{4}\right][−4π,4π] 与[3π4,5π4]\left[\cfrac{3 \pi}{4}, \cfrac{5 \pi}{4}\right][43π,45π].
由图形的对称性及公式(5), 得到
A=4⋅12∫0π4a2cos2θdθ=a2sin2θ∣0π4=a2.A=4 \cdot \cfrac{1}{2} \int_{0}^{\cfrac{\pi}{4}} a^{2} \cos 2 \theta \mathrm{d} \theta=\left.a^{2} \sin 2 \theta\right|_{0} ^{\cfrac{\pi}{4}}=a^{2} .A=4⋅21∫04πa2cos2θdθ=a2sin2θ04π=a2.
本文通过数学分析方法探讨了如何使用极坐标方程计算平面图形的面积,以双纽线r²=a²cos2θ为例,详细解说了求解过程,最终得出该双纽线所围图形的面积为a²。
2454

被折叠的 条评论
为什么被折叠?



