Maix Dock(M1/M1W) 开发板 maixypy k210的使用教程

类似于下面的这份代码这样的讲解介绍教程链接:image(机器视觉) - Sipeed Wiki

image(机器视觉)
编辑本页
移植于 openmv, 与 openmv 功能相同

一、例程#
1.1. 例程 1: 找绿色#
import sensor
import image
import lcd
import time
lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
green_threshold   = (0,   80,  -70,   -10,   -0,   30)
while True:
    img=sensor.snapshot()
    blobs = img.find_blobs([green_threshold])
    if blobs:
    	for b in blobs:
    		tmp=img.draw_rectangle(b[0:4])
    		tmp=img.draw_cross(b[5], b[6])
    		c=img.get_pixel(b[5], b[6])
    lcd.display(img)
1.2. 例程 2: 显示 fps#
import sensor
import image
import lcd
import time

clock = time.clock()
lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
sensor.skip_frames(30)
while True:
    clock.tick()
    img = sensor.snapshot()
    fps =clock.fps()
    img.draw_string(2,2, ("%2.1ffps" %(fps)), color=(0,128,0), scale=2)
    lcd.display(img)
1.3. 例程 3: 扫描二维码#
import sensor
import image
import lcd
import time

clock = time.clock()
lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_vflip(1)
sensor.run(1)
sensor.skip_frames(30)
while True:
    clock.tick()
    img = sensor.snapshot()
    res = img.find_qrcodes()
    fps =clock.fps()
    if len(res) > 0:
        img.draw_string(2,2, res[0].payload(), color=(0,128,0), scale=2)
        print(res[0].payload())
    lcd.display(img)

如果使用了镜头,画面会有扭曲,需要矫正画面
使用 lens_corr 函数来矫正, 比如 2.8mm, img.lens_corr(1.8)
无法识别二维码的时候需要用sensor.set_hmirror(1)来调整摄像头的镜像画面

1.4. 例程4 寻找矩阵#
# Find Rects Example
#
# 这个例子展示了如何使用april标签代码中的四元检测代码在图像中找到矩形。 四元检测算法以非常稳健的方式检测矩形,并且比基于Hough变换的方法好得多。 例如,即使镜头失真导致这些矩形看起来弯曲,它仍然可以检测到矩形。 圆角矩形是没有问题的!
# (但是,这个代码也会检测小半径的圆)...

import sensor, image, time

sensor.reset()
sensor.set_pixformat(sensor.RGB565) 
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time = 2000)
sensor.set_vflip(1)

clock = time.clock()

while(True):
    clock.tick()
    img = sensor.snapshot()

    # 下面的`threshold`应设置为足够高的值,以滤除在图像中检测到的具有
    # 低边缘幅度的噪声矩形。最适用与背景形成鲜明对比的矩形。

    for r in img.find_rects(threshold = 10000):
        img.draw_rectangle(r.rect(), color = (255, 0, 0))
        for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0))
        print(r)

    print("FPS %f" % clock.fps())

1.5. 例程5 寻找Apriltag#
# AprilTags 示例
#
# 此示例显示了OpenMV Cam在OpenMV Cam M7上检测April标签的强大功能。
# OpenMV2 M4版本无法检测April标签。

import sensor, image, time, math

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA) # 如果分辨率更大,我们的内存会耗尽...
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False)  # 必须关闭此功能,以防止图像冲洗…
sensor.set_auto_whitebal(False)  # 必须关闭此功能,以防止图像冲洗…
clock = time.clock()

# 注意!与find_qrcodes不同,find_apriltags方法不需要对图像进行镜头校正

# apriltag代码最多支持可以同时处理6种tag家族。
# 返回的tag标记对象,将有其tag标记家族及其在tag标记家族内的id。

tag_families = 0
tag_families |= image.TAG16H5 # 注释掉,禁用这个家族
tag_families |= image.TAG25H7 # 注释掉,禁用这个家族
tag_families |= image.TAG25H9 # 注释掉,禁用这个家族
tag_families |= image.TAG36H10 # 注释掉,禁用这个家族
tag_families |= image.TAG36H11 # 注释掉以禁用这个家族(默认家族)
tag_families |= image.ARTOOLKIT # 注释掉,禁用这个家族

#标签系列有什么区别? 那么,例如,TAG16H5家族实际上是一个4x4的方形标签。 
#所以,这意味着可以看到比6x6的TAG36H11标签更长的距离。 
#然而,较低的H值(H5对H11),意味着4x4标签的假阳性率远高于6x6标签。 
#所以,除非你有理由使用其他标签系列,否则使用默认族TAG36H11。



def family_name(tag):
    if(tag.family() == image.TAG16H5):
        return "TAG16H5"
    if(tag.family() == image.TAG25H7):
        return "TAG25H7"
    if(tag.family() == image.TAG25H9):
        return "TAG25H9"
    if(tag.family() == image.TAG36H10):
        return "TAG36H10"
    if(tag.family() == image.TAG36H11):
        return "TAG36H11"
    if(tag.family() == image.ARTOOLKIT):
        return "ARTOOLKIT"

while(True):
    clock.tick()
    img = sensor.snapshot()
    for tag in img.find_apriltags(families=tag_families): # 如果没有给出家族,默认TAG36H11。
        img.draw_rectangle(tag.rect(), color = (255, 0, 0))
        img.draw_cross(tag.cx(), tag.cy(), color = (0, 255, 0))
        print_args = (family_name(tag), tag.id(), (180 * tag.rotation()) / math.pi)
        print("Tag Family %s, Tag ID %d, rotation %f (degrees)" % print_args)
    print(clock.fps())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广药门徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值