Mask R-CNN与YOLOv8虽然都是深度学习在计算机视觉领域的应用,但它们属于不同类型的视觉框架,各有特点和优势。
以下是关于 Mask R-CNN 和 YOLOv8 的详细对比分析,涵盖核心原理、性能差异、应用场景和选择建议:
1. 核心原理与功能差异
特性 | YOLOv8 | Mask R-CNN |
---|---|---|
架构类型 | 单阶段检测器 (One-Stage) | 两阶段检测器 (Two-Stage) |
主要输出 | 边界框 (BBox) + 类别 | BBox + 类别 + 实例分割掩码 |
工作流程 | 直接预测全局图像中的目标 | 首先生成候选区域 (RoI),再细化预测 |
分割能力 | 无(需扩展) | 原生支持实例分割 |
实时性 | 高(100+ FPS @ 640x640) | 低(5-15 FPS @ 相同分辨率) |
训练数据要求 | 相对较低(仅需BBox标注) | 较高(需BBox + 像素级掩码标注) |