改进 U-Net 模型并实现轻量化的实践探索——以钢材表面缺陷分割为例

一、背景介绍

U-Net 是语义分割领域的经典模型,广泛应用于医学影像处理和工业场景中。然而,U-Net 的原始架构参数量较大,不适合在资源受限的设备上进行高效推理。此外,对于分割任务中的小目标检测,原始模型在边缘处理上仍有一定改进空间。

在本次项目中,针对一个结构化的语义分割数据集(如工业钢材表面缺陷检测),我们对 U-Net 模型进行了以下改进:

  1. 模型轻量化:通过使用深度可分离卷积和注意力机制(ECA 模块),减少模型参数和计算开销。
  2. 优化损失函数:结合 Focal Loss 和 Dice Loss,改善小目标检测能力。
  3. 数据增强:增加图像变换的多样性,提升模型对不同图像特征的适应性。

二、模型改进方案

1. 深度可分离卷积

深度可分离卷积将标准卷积分解为两步:

  1. 深度卷积:每个通道单独执行卷积,用于提取空间特征。
  2. 逐点卷积:使用 1x1 卷积将各通道信息融合。

这种方式可以大幅减少参数量,同时保持模型的表达能力。代码实现如下:

class SeparableConv(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(Sepa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值