机器学习与运筹优化打造智慧供应链的最佳实践
导读 本文将从消费零售行业视角,剖析前沿技术能够为行业供应链变革带来哪些新的变化,并通过实际案例分享落地实践心得。
主要内容包括四个部分:
-
关于杉数科技
-
从 0 到 1 - 深入探索何为智慧供应链
-
从 1 到 N - 传统供应链如何加速推进智慧供应链转型
-
最佳实践 - 实际落地案例分享
分享嘉宾|苏广俊 杉数科技 副总裁,供应链事业部负责人
内容校对|李瑶
出品社区|DataFun
01 关于杉数科技
杉数是国内领先的智能决策公司,也是智能决策领域的探路者,从最早为京东提供服务,到陆续服务于更多的各个行业的大型企业,目前成立六七年时间,已经服务上百家企业。
杉数有两块核心服务,一个是底层的 COPT 的求解,另一个是服务于业务问题解决的 Planiverse 端到端供应链计划平台。COPT 是专门解决底层的、超复杂的、超大数据量的、快速精准的计算,能够提供非常强大的算力支持。Planiverse 是基于底层技术的支持,专门去解决实际业务的一些问题,特别是在供应链计划领域。因为在大多数企业中,供应链计划是整个供应链运营的大脑,是非常核心的需要运用数据、算法、平台去做出变革的环节。
接下来开始正文的分享。
02 从 0 到 1 - 深入探索何为智慧供应链
首先来介绍一下行业中供应链变革的进程。从对数据使用的程度、协同程度、流程的规范性等角度,可以将企业供应链分为四个等级:
-
原始供应链,是随机的、分散的、无分工的;
-
初级供应链可能有一定的职能分工、但是缺少协同,平时各个部门沟通协调也都是靠吵架来完成;
-
协同供应链,能够有标准的组织流程和系统,去帮助各个部门之间实现协同决策;
-
智慧供应链,在协同供应链的基础上,加上更多算法的使用,去做数据驱动的决策。
从杉数过往的实施经验上看,目前大多数腰部及以上的供应链企业,都处于初级供应链往协同供应链转型的阶段,也有一些头部的外企、或者国央企、民企等,在积极地从协同供应链向智慧供应链升级。
在企业端,智慧供应链应该具备哪些特征呢?
首先是消费者洞察。现在很多企业在做供应链管理的时候,发现供应链管理其实不再是站在非常后端的一个角色,而是希望有更多的消费者洞察,能更敏捷地指导供应链各个环节的关键决策。所以如何对消费者行为做一些数字化,并结合这些消费者数据分析使用,是非常关键的。比如企业会通过消费者价格敏感度的研究,来指导促销、定价等等,这些也会影响后端应该怎样去备货,怎样做生产。现在数据的可得性、技术的完备程度,是能够支持供应链去做更深入的消费者洞察,并指导后续决策的。
第二个是需求驱动,在消费品行业里,供应链的源头是品牌商发往经销商的出货需求,但是这个出货需求其实距离终端消费者之间还有非常深的经销商体系,原来缺少这一部分信息,例如经销商有压货的行为,就会导致需求会被扭曲,误导后续的供应链决策。现在很多企业能够获得更贴近终端消费者的数据,就可以从源头去指导后续的需求计划、备货计划等。
第三个是更敏捷的库存管理,包括如何去优化仓网体系、做出多级库存的优化,怎么从原来静态的安全库存策略变成更加数据驱动的、更加场景化的动态安全库存策略,以及现在消费品企业推进的一盘货和 DTC 的一些概念。下文也会介绍在这样的业务变革情况下,怎样用技术去帮助客户提升库存周转。
第四个是协同计划,整个供应链管理是一个复杂的系统工程ÿ