线性回归(Linear Regression)
是一种用于建立和分析变量之间线性关系的统计模型。在简单线性回归中,我们尝试通过一个自变量来预测一个因变量的取值;在多元线性回归中,我们则使用多个自变量来预测一个因变量。
线性回归的目标是找到一条最佳拟合直线(或超平面),使得观测数据点到这条直线(或超平面)的距离之和最小化,通常使用最小二乘法来实现这一目标。
通过线性回归模型,我们可以对数据进行预测、探索变量之间的关系,以及评估变量对因变量的影响程度等。线性回归在实际应用中被广泛使用,例如在经济学、社会科学和自然科学领域。
下面是一个简单的代码例子
运行结果:
逻辑回归(Logistic Regression)
实际上是一种用于解决分类问题的统计学习方法,而不是回归问题。尽管名字中带有“回归”,但逻辑回归通常用于处理二分类问题,也可以扩展到多分类问题。
在逻辑回归中,我们使用逻辑函数(也称为 S 形曲线)将输入