线性回归与逻辑回归复习

本文对比了线性回归和逻辑回归,前者用于建立线性关系进行数值预测,后者用于分类问题,通过Sigmoid函数给出类别概率。两者虽然名称相似,但适用场景和输出结果大相径庭。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归(Linear Regression)

是一种用于建立和分析变量之间线性关系的统计模型。在简单线性回归中,我们尝试通过一个自变量来预测一个因变量的取值;在多元线性回归中,我们则使用多个自变量来预测一个因变量。

线性回归的目标是找到一条最佳拟合直线(或超平面),使得观测数据点到这条直线(或超平面)的距离之和最小化,通常使用最小二乘法来实现这一目标。

通过线性回归模型,我们可以对数据进行预测、探索变量之间的关系,以及评估变量对因变量的影响程度等。线性回归在实际应用中被广泛使用,例如在经济学社会科学和自然科学领域

下面是一个简单的代码例子

运行结果:

逻辑回归(Logistic Regression)

实际上是一种用于解决分类问题的统计学习方法,而不是回归问题。尽管名字中带有“回归”,但逻辑回归通常用于处理二分类问题,也可以扩展到多分类问题。

在逻辑回归中,我们使用逻辑函数(也称为 S 形曲线)将输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值