概率论复习笔记四——期望、方差、协方差与相关系数

一、几个不等式

1.1 切比雪夫不等式

对于任何具有有限方差的随机变量 ξ \xi ξ,都有 P { ∣ ξ − E ξ ∣ ≥ ε } ≤ D ξ ε 2 (1) P\{|\xi-E\xi|\ge \varepsilon\}\le\frac{D\xi}{\varepsilon^2}\tag1 P{ξEξε}ε2Dξ(1)
其中 ε \varepsilon ε是任一正数。

证明
D ξ = ∫ − ∞ ∞ ( x − E ξ ) 2   d F ( x ) ≥ ∫ ∣ x − E ξ ≥ ε ∣ ( x − E ξ ) 2   d F ( x ) ≥ ∫ ∣ x − E ξ ≥ ε ∣ ε 2   d F ( x ) D\xi=\int_{-\infty}^{\infty}(x-E\xi)^2\, dF(x)\ge\int_{|x-E\xi\ge\varepsilon|}(x-E\xi)^2\, dF(x)\ge\int_{|x-E\xi\ge\varepsilon|}\varepsilon^2\, dF(x) Dξ=(xEξ)2dF(x)xEξε(xEξ)2dF(x)xEξεε2dF(x)

根据上述不等式,我们可以得到 P { ∣ ξ − E ξ D ξ ∣ ≥ δ } ≤ 1 δ 2 (2) P\{|\frac{\xi-E\xi}{\sqrt{D\xi}}|\ge\delta\}\le\frac{1}{\delta^2}\tag2 P{Dξ ξEξδ}δ21(2)

切比雪夫不等式利用随机变量 ξ \xi ξ的数学期望 E ξ E\xi Eξ和方差 D ξ = σ 2 D\xi=\sigma^2 Dξ=σ2 ξ \xi ξ的概率分布进行估计。比如式子 ( 2 ) (2) (2)断言不管 ξ \xi ξ的分布是什么, ξ \xi ξ落在 ( E ξ − σ δ , E ξ + σ δ ) (E\xi-\sigma\delta,E\xi+\sigma\delta) (Eξσδ,Eξ+σδ)中的概率均不小于 1 − 1 δ 2 1-\frac{1}{\delta^2} 1δ21

1.2 Cauchy —Schwarz不等式

对任意的随机变量 ξ , η \xi, \eta ξ,η都有 ∣ E ξ η ∣ 2 ≤ E ξ 2 ⋅ E η 2 (3) |E\xi\eta|^2\le E\xi^2\cdot E\eta^2\tag3 Eξη2Eξ2Eη2(3)
等式成立当且仅当 P { η = t 0 ξ } = 1 P\{\eta=t_0\xi\}=1 P{η=t0ξ}=1,这里 t 0 t_0 t0是某一个常数。

证明
对任意实数 t t t,定于 u ( t ) = E ( t ξ − η ) 2 = t 2 E ξ 2 − 2 t E ξ η + E η 2 u(t)=E(t\xi-\eta)^2=t^2E\xi^2-2tE\xi\eta+E\eta^2 u(t)=E(tξη)2=t2Eξ22tEξη+Eη2,显然 u ( t ) ≥ 0 u(t)\ge0 u(t)0恒成立,所以根的判别式 ∣ E ξ η ∣ 2 − E ξ 2 ⋅ E η 2 ≤ 0 |E\xi\eta|^2 - E\xi^2\cdot E\eta^2\le0 Eξη2Eξ2Eη20

二、数字特征

2.1 期望

若随机变量 ξ \xi ξ的分布函数为 F ( x ) F(x) F(x),则定义 E ξ = ∫ − ∞ ∞ x   d F ( x ) (4) E\xi=\int_{-\infty}^{\infty}x\,dF(x)\tag4 Eξ=xdF(x)(4) ξ \xi ξ的数学期望,要求上述积分绝对收敛,否则数学期望不存在。

2.2 方差

E ( ξ − E ξ ) 2 E(\xi-E\xi)^2 E(ξEξ)2存在,则称它为随机变量 ξ \xi ξ的方差,记为 D ξ D\xi Dξ,易得 D ξ = E ξ 2 − ( E ξ ) 2 D\xi=E\xi^2-(E\xi)^2 Dξ=Eξ2(Eξ)2

2.3 协方差

σ i j = c o v ( ξ i , ξ j ) = E [ ( ξ i − E ξ i ) ( ξ j − E ξ j ) ] \sigma_{ij}=cov(\xi_i, \xi_j)=E[(\xi_i-E\xi_i)(\xi_j-E\xi_j)] σij=cov(ξi,ξj)=E[(ξiEξi)(ξjEξj)]为随机变量 ξ i \xi_i ξi ξ j \xi_j ξj的协方差。

不难验算: c o v ( ξ i , ξ j ) = E ξ i ξ j − E ξ i ⋅ E ξ j (5) cov(\xi_i,\xi_j)=E\xi_i\xi_j-E\xi_i\cdot E\xi_j\tag5 cov(ξi,ξj)=EξiξjEξiEξj(5)
D ( ∑ i = 1 n ξ i ) = ∑ i = 1 n D ξ i + 2 ∑ 1 ≤ i < j ≤ n c o v ( ξ i , ξ j ) (6) D(\sum\limits_{i=1}^n\xi_i)=\sum\limits_{i=1}^nD\xi_i+2\sum\limits_{1\le i\lt j\le n}cov(\xi_i,\xi_j)\tag6 D(i=1nξi)=i=1nDξi+21i<jncov(ξi,ξj)(6)

2.4 相关系数

ρ i j = c o v ( ξ i , ξ j ) D ξ i D ξ j (7) \rho_{ij}=\frac{cov(\xi_i, \xi_j)}{\sqrt{D\xi_i}\sqrt{D\xi_j}}\tag7 ρij=Dξi Dξj cov(ξi,ξj)(7) ξ i , ξ j \xi_i, \xi_j ξi,ξj的相关系数。

∣ ρ i j ∣ = 1 |\rho_{ij}|=1 ρij=1时,两个随机变量完全相关,当 ∣ ρ i j ∣ = 0 |\rho_{ij}|=0 ρij=0时,两个随机变量不相关。

性质
如果 ξ \xi ξ η \eta η独立,那么它们不相关,但反之不一定成立。不过对于正态随机变量二值随机变量,不相关性和独立性是等价的。

2.5 矩

对于正整数 k k k,称 m k = E ξ k m_k=E\xi_k mk=Eξk k k k原点矩 c k = E ( ξ − E ξ ) k c_k=E(\xi-E\xi)^k ck=E(ξEξ)k k k k中心矩

2.6 条件数学期望

ξ = x \xi=x ξ=x的条件下, η \eta η的条件数学期望为 E { η ∣ ξ = x } = ∫ − ∞ ∞ y p ( y ∣ x )   d y (8) E\{\eta |\xi=x\}=\int_{-\infty}^{\infty}yp(y|x)\,dy\tag8 E{ηξ=x}=yp(yx)dy(8)

根据定义可以推导出重期望公式 E η = E [ E { η ∣ ξ } ] (9) E\eta=E[E\{\eta|\xi\}]\tag9 Eη=E[E{ηξ}](9)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值