一、几个不等式
1.1 切比雪夫不等式
对于任何具有有限方差的随机变量 ξ \xi ξ,都有 P { ∣ ξ − E ξ ∣ ≥ ε } ≤ D ξ ε 2 (1) P\{|\xi-E\xi|\ge \varepsilon\}\le\frac{D\xi}{\varepsilon^2}\tag1 P{
∣ξ−Eξ∣≥ε}≤ε2Dξ(1)
其中 ε \varepsilon ε是任一正数。
证明:
D ξ = ∫ − ∞ ∞ ( x − E ξ ) 2 d F ( x ) ≥ ∫ ∣ x − E ξ ≥ ε ∣ ( x − E ξ ) 2 d F ( x ) ≥ ∫ ∣ x − E ξ ≥ ε ∣ ε 2 d F ( x ) D\xi=\int_{-\infty}^{\infty}(x-E\xi)^2\, dF(x)\ge\int_{|x-E\xi\ge\varepsilon|}(x-E\xi)^2\, dF(x)\ge\int_{|x-E\xi\ge\varepsilon|}\varepsilon^2\, dF(x) Dξ=∫−∞∞(x−Eξ)2dF(x)≥∫∣x−Eξ≥ε∣(x−Eξ)2dF(x)≥∫∣x−Eξ≥ε∣ε2dF(x)。
根据上述不等式,我们可以得到 P { ∣ ξ − E ξ D ξ ∣ ≥ δ } ≤ 1 δ 2 (2) P\{|\frac{\xi-E\xi}{\sqrt{D\xi}}|\ge\delta\}\le\frac{1}{\delta^2}\tag2 P{ ∣Dξξ−Eξ∣≥δ}≤δ21(2)
切比雪夫不等式利用随机变量 ξ \xi ξ的数学期望 E ξ E\xi Eξ和方差 D ξ = σ 2 D\xi=\sigma^2 D