DeepSeek V3把训练大模型的成本给干下来了(附教程)

一夜之间,DeepSeek突然之间炸场,各个大佬都在纷纷转发,而且发布即开源,直接用50多页的论文公布了其训练细节

简单来说,DeepSeek V3是个拥有671B参数的MoE模型,每个token可以激活37B参数,利用了大概14.8T的高质量token进行了大规模与训练。原生就是FP8混合精度训练框架,并首次验证其在超大规模模型上的有效性

训练大模型也可以很省钱

DeepSeek V3延续了便宜又快的训练思路。

DeepSeek V3的训练总共才用了不到280万个GPU小时,而Llama 3 405B却用了3080万GPU小时。用训练一个模型所花费的钱来说,训练一个DeepSeek V3只需要花费557.6万美元,相比之下,一个简单的7B Llama 3模型则需要花费76万美元。

从论文中的公布细节可以得到它的训练成本估算

  • 以 H800 GPU 小时为单位。H800 GPU 的租赁价格假定为每小时 2 美元。
  • 训练分为三个阶段:预训练、上下文扩展和后期训练:
  • 预训练:使用了 2664K(266.4 万)GPU 小时,成本约为 532.8 万美元。
  • 上下文扩展:使用了 119K(11.9 万)GPU 小时,成本约为 23.8 万美元。
  • 后期训练:使用了 5K GPU 小时,成本约为 1,000 美元。
  • 总成本:2788K(278.8 万)GPU 小时,总费用为 557.6 万美元。

比起动辄几百亿人民币都训练不出来一个好用的大模型,DeepSeek V3的训练简直颠覆了大家的想象。这里训练这么省钱当然主要是因为该模型原生就是FP8,还有在模型架构上做了一些优化导致模型训练成本很低。

模型效果惊为天人

从发布的效果来看,这个开源模型在多个数据集上的效果都能够赶上最前沿的几个大模型。

比如在英语任务上,在多项英语基准(MMLU、MMLU-Redux、DROP 等)上,DeepSeek V3 展现了强劲的性能:在 MMLU-Redux(89.1)和 DROP(91.6)的表现优于其他模型,就连GPT-4o分数都比它要低,在复杂推理任务中展现了领先优势。F-Eval(Prompt Strict)上达到 86.1,仅仅只略低于 Claude-3.5(86.5)。

在编程领域上,DeepSeek V3 在编程任务中表现中规中矩:

  • HumanEval-MulCodeforces 的基准上,分别取得 82.6 和 51.6。
  • 对比之下,只有Claude-3.5 在部分代码生成任务上(SWE Verified)表现略优。

在数学任务上,DeepSeek V3 在数学推理任务中表现出色:

  • MATH-500(90.2)的表现超过 GPT-4o(74.6)和 Claude-3.5(78.3)。
  • AIME 2024CNMO 2024 的 测试中,分别取得 39.2 和 43.2 的分数。

中文任务这个应该是最有优势的了,基本都可以秒杀国外的一些前沿大模型,

  • CLUEWSC(90.9)接近 Qwen2.5 的顶级表现(91.4)。
  • 在更复杂的中文问答任务(C-SimpleQA)中,DeepSeek V3 的分数为 64.1,达到顶尖水准。

在又快又好的同时,DeepSeek V3的API价格也被打下来了。每一百万的输入tokens,只需要0.27 ;每百万的输出 t o k e n s 需要 1.1 ;每百万的输出tokens需要1.1 ;每百万的输出tokens需要1.1

我们这里对比一下目前国外几个前沿大模型的价格,**GPT-4每百万输入tokens,高达30 ,而 C l a u d e 3 O p u s 每百万输出 t o k e n s 也要 15 ,而Claude3 Opus每百万输出tokens也要15 ,而Claude3Opus每百万输出tokens也要15。**从价格上来看,DeepSeek V3真的是太便宜的,便宜到我都怀疑这个公司还能不能赚到钱。

而如果要平衡性能和成本,它就成了DeepSeek官方绘图中唯一进入“最佳性价比”三角区的模型。其他像GPT-4o、Claude3.5等模型,价格都比较昂贵。

模型的一些训练细节

DeepSeek V3除了使用了FP8之外,还有一些其他的模型细节。比如它继续采用了多头潜在注意力(MLA)来实现高效推理。它在传统多头注意力机制(Multi-Head Attention)的基础上,引入了潜在特征(Latent Features)概念,进一步提高了对复杂关系的建模能力。

也就是先把token的特征压缩成一个小维度的latent vector,然后再通过一些简单的变换把它扩展到各个头需要的Key和Value空间。对于一些重要的信息,比如旋转位置编码RoPE,会进行单独处理,这样网络仍然可以保留时间和位置的信息。

在MOE架构中,引入了路由专家 (Routed Experts) 和共享专家 (Shared Experts) 。主要是用来激活那些参数需要被更新。

**路由专家中主要是用来选择参数进行激活。**对于每个输入的token,只有一部分路由专家会被选中来参与计算。这个选择过程是由一个门控机制决定的,比如DeepSeekMoE中用的那种根据亲和度分数来选的Top-K方式。

而**共享专家始终参与所有输入的处理。**无论输入是什么,所有共享专家都会贡献它们的力量。

还用到了一个MTP(多个tokens预测)技术,**MTP的核心理念在于训练时,模型不仅要预测下一个token(就像传统语言模型那样),还要同时预测序列后面的几个token。**这样一来,模型就能获得更丰富的训练信息,有助于它更深入地理解上下文以及长距离的依赖关系。

写在最后

DeepSeek-V3现在已经可以在官方平台上直接测试了,代码也是完全开源的,可以随时下载。国外的AI爱好者们都已经开始尝试了,有人甚至把4个或8个M4 Mac mini叠在一起运行DeepSeek V3。

还有开发者用DeepSeek-V3创建了一个AI公司logo风格的小行星游戏,只要几分钟很快就搞定了。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总的来说,DeepSeek V3的发布,只用了较低的成本就可以超越现有的一些大模型,并且能够和GPT-4o和Claude 3.5相媲美,确实是一个杰出的工作。其高效的训练方法和较低的计算成本,可以给其他没有资源的公司借鉴一下,也验证了大规模的GPU集群不是训练大模型的必要条件。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 关于 DeepSeek 大模型训练方法 DeepSeek大模型在自然语言处理领域表现优异,然而其对计算资源的需求较高。为了有效训练和优化该模型,不仅需要强大的硬件支持,还需要采用高效的算法来减少时间和经济成本[^1]。 针对这一需求,官方提供了详细的培训指南和技术文档,帮助开发者更好地理解和利用这些先进的技术成果。具体来说: #### 官方文档与教程获取途径 - **官方网站**:访问 DeepSeek 的官网可以找到最权威的技术文档和支持材料。 - **GitHub 仓库**:项目源码托管平台 GitHub 上也有专门维护的代码库,其中包含了丰富的示例程序、配置文件说明等内容,方便用户学习借鉴。 #### 训练环境搭建建议 由于 DeepSeek 对算力有较高的依赖,在构建本地开发环境时推荐选用配备高性能 GPU 的机器,并安装 NVIDIA CUDA Toolkit 及 cuDNN 库以加速运算过程。此外,还需确保 Python 版本不低于 3.7 并完成 PyTorch 或 TensorFlow 等深度学习框架的部署工作。 ```bash # 更新系统包管理器并安装必要组件 sudo apt-get update && sudo apt-get install -y build-essential cmake git wget unzip libsm6 libxext6 zlib1g-dev # 下载并设置 Anaconda/Miniconda 虚拟环境 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda source ~/miniconda/etc/profile.d/conda.sh # 创建新的 conda 环境用于 DeepSeek 开发 conda create --name deepseek python=3.9 conda activate deepseek # 安装 PyTorch 和其他依赖项 pip install torch torchvision torchaudio cudatoolkit=11.3 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` #### 数据准备与预处理流程 高质量的数据集对于提升模型性能至关重要。通常情况下,会先收集大量文本数据作为输入素材,再经过清洗、分词等一系列操作转换成适合喂给神经网络的形式。此阶段可能涉及去除噪声信息(如HTML标签)、标准化字符编码等工作。 ```python import re from nltk.tokenize import word_tokenize def clean_text(text): """清理原始 HTML 字符串中的特殊符号""" text = re.sub(r&#39;<.*?>&#39;, &#39;&#39;, text) # 移除 HTML 标签 text = re.sub(r&#39;\s+&#39;, &#39; &#39;, text).strip()# 替换多余空白为空格 return text.lower() def preprocess_dataset(raw_texts): cleaned_texts = [clean_text(t) for t in raw_texts] tokenized_words = [] for doc in cleaned_texts: tokens = word_tokenize(doc) filtered_tokens = [w for w in tokens if not w.isnumeric()] tokenized_words.append(filtered_tokens) return tokenized_words ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值