大模型入门指南 - Inference:小白也能看懂的“模型推理”全解析

对于刚接触大模型(如GPT、LLaMA、DeepSeek、Qwen等)的新手来说,"推理(Inference)"可能是最让人困惑的术语之一。它不像"训练"那样直观,也不像"微调"那样有明确的目标,但却是大模型从"学习"到"干活"的关键环节。

Best LLM Inference Engines and Servers to Deploy LLMs in Production - Koyeb

一、概念解读

Inference(模型推理)到底是个啥?模型推理是训练好的大模型从“学习知识”到“实际应用”的核心环节。模型推理 = 让训练好的模型"干活"(比如回答你的问题、翻译文本、生成文章等)。

简单来说,就是让模型根据输入数据“动脑思考”,生成答案或决策。例如,输入“请解方程:3x+5=32”,模型会输出解题步骤与答案。

  • 训练:就像学生背书、刷题,目标是记住知识(模型参数)。
  • 推理:就像学生考试,根据题目(输入)写出答案(输出),但不再翻书(不更新参数)。

模型推理的本质是通过将用户输入转化为数据信号,触发内部预存的参数‘齿轮组’(矩阵运算+注意力机制)高速运转,最终‘吐出’与输入匹配的答案,全程参数冻结、只做计算不做学习。

How to generate training data for your ML system

为什么需要Inference(模型推理)?模型推理是AI的“最后一公里”——训练赋予知识,推理激活价值;若仅有训练,模型便如“空有蓝图”的图纸,永远无法落地为“解决问题”的生产力工具。

模型如同一个刚出生的“婴儿大脑”(随机初始化的参数),无法理解任何信息,也无法解决实际问题。训练(Training)是让模型通过海量数据“学习知识”,从“一无所知”进化为“掌握规律”的“知识载体”;而推理(Inference)则是让模型将学到的知识“学以致用”,真正成为解决实际问题的“工具”。

    Understanding how LLM inference works with llama.cpp

    二、技术实现

    Inference(模型推理)如何进行技术实现?模型推理可通过“PyTorch原生推理、Transformers库推理、FastAPI服务化”三种方式实现,三者构成从“代码”到“服务”的完整技术链,分别对应“开发验证、快速部署、工业级服务”三大核心场景。

    1. PyTorch 原生推理:开发调试的“零封装”方案

    直接加载训练好的.pt/.pth模型,通过model.eval() + torch.no_grad()切换推理模式,复用训练代码逻辑(代码复用率超85%)。

    import torchfrom ultralytics import YOLO  # YOLOv8专用库from PIL import Image# 1. 加载预训练的YOLOv8模型(支持多种尺寸:nano/small/medium/large/x-large)model = YOLO('yolov8n.pt')  # 2. 切换至推理模式(YOLOv8自动处理,无需手动调用eval())# 3. 设置计算设备(GPU加速)device = 'cuda' if torch.cuda.is_available() else 'cpu'model.to(device)  # 将模型移至GPU/CPU# 4. 加载输入图像image_path = "test_image.jpg"image = Image.open(image_path).convert("RGB")# 5. 执行推理(自动预处理、推理、后处理)results = model(image)  # 输入支持PIL/OpenCV/numpy格式# 6. 解析检测结果(直接输出结构化数据)predictions = results[0].boxes.data  # 获取检测框数据(Tensor格式)print("检测结果(原始Tensor):\n", predictions)# 7. 转换为DataFrame格式df = results[0].pandas().xyxy[0]  # 转换为Pandas DataFrameprint("结构化检测结果:\n")print(df[['xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name']])# 8. 可视化与保存结果results[0].show()          # 显示带标注的图像results[0].save("output/")  # 保存结果到output目录

    2. Transformers 库推理:预训练模型的“一键式”部署

    通过Hugging Face的transformers库加载预训练模型(基于Transformer架构的

    Qwen、DeepSeek等大语言模型),实现“模型加载→推理→后处理”全流程封装。​​​​​​​

    from transformers import AutoTokenizer, AutoModelForCausalLM  # 1. 加载模型和分词器  model = AutoModelForCausalLM.from_pretrained("llama-7b")  tokenizer = AutoTokenizer.from_pretrained("llama-7b")  # 2. 输入预处理  input_text = "解方程:3x + 5 = 32"  input_ids = tokenizer(input_text, return_tensors="pt").input_ids  # 3. 推理生成  output = model.generate(input_ids, max_length=100)  # 4. 后处理  answer = tokenizer.decode(output[0], skip_special_tokens=True)  print(answer)  # 输出:"步骤1:两边减5 → 3x=27;步骤2:两边除以3 → x=9"  

    3. FastAPI 服务化:推理逻辑的“工业级”封装

    将PyTorch/Transformers的推理代码封装为RESTful API,通过FastAPI框架支持高并发请求,结合Nginx负载均衡实现生产环境部署。​​​​​​​

    from fastapi import FastAPI, File, UploadFilefrom PIL import Imageimport torchfrom io import BytesIOimport base64# 初始化FastAPI应用app = FastAPI()# 加载预训练的YOLOv8模型(目标检测)model = torch.hub.load('ultralytics/yolov5', 'yolov8s')  # 'yolov8s'为YOLOv8的小模型版本# 可选其他版本:'yolov8n'(nano)、'yolov8m'(medium)、'yolov8l'(large)、'yolov8x'(extra-large)@app.post("/predict")async def predict(image: UploadFile = File(...)):    # 1. 读取上传的图像    contents = await image.read()    image_pil = Image.open(BytesIO(contents)).convert("RGB")    # 2. 执行推理(YOLO自动处理预处理和后处理)    results = model(image_pil)    # 3. 解析结果    detections = results.pandas().xyxy[0]  # 转换为DataFrame格式    output = []    for _, row in detections.iterrows():        output.append({            "class": row["name"],            "confidence": row["confidence"],            "bbox": [row["xmin"], row["ymin"], row["xmax"], row["ymax"]]        })    # 4. 返回结果(可选:返回带标注的图像Base64编码)    results.render()  # 在图像上绘制检测框    buffered = BytesIO()    results.save(save_dir=buffered, format="JPEG")  # 保存到内存    image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")    return {        "detections": output,        "image_with_boxes": image_base64  # 可选字段    }# 启动命令:uvicorn main:app --host 0.0.0.0 --port 8000

     如何系统的去学习大模型LLM ?

    大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

    事实上,抢你饭碗的不是AI,而是会利用AI的人。

    科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

    与其焦虑……

    不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

    但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

    基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

    在这个版本当中:

    第一您不需要具备任何算法和数学的基础
    第二不要求准备高配置的电脑
    第三不必懂Python等任何编程语言

    您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

    一、LLM大模型经典书籍

    AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

    在这里插入图片描述

    二、640套LLM大模型报告合集

    这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
    在这里插入图片描述

    三、LLM大模型系列视频教程

    在这里插入图片描述

    四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

    在这里插入图片描述

    五、AI产品经理大模型教程

    在这里插入图片描述

    LLM大模型学习路线 

    阶段1:AI大模型时代的基础理解

    • 目标:了解AI大模型的基本概念、发展历程和核心原理。

    • 内容

      • L1.1 人工智能简述与大模型起源
      • L1.2 大模型与通用人工智能
      • L1.3 GPT模型的发展历程
      • L1.4 模型工程
      • L1.4.1 知识大模型
      • L1.4.2 生产大模型
      • L1.4.3 模型工程方法论
      • L1.4.4 模型工程实践
      • L1.5 GPT应用案例

    阶段2:AI大模型API应用开发工程

    • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

    • 内容

      • L2.1 API接口
      • L2.1.1 OpenAI API接口
      • L2.1.2 Python接口接入
      • L2.1.3 BOT工具类框架
      • L2.1.4 代码示例
      • L2.2 Prompt框架
      • L2.3 流水线工程
      • L2.4 总结与展望

    阶段3:AI大模型应用架构实践

    • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

    • 内容

      • L3.1 Agent模型框架
      • L3.2 MetaGPT
      • L3.3 ChatGLM
      • L3.4 LLAMA
      • L3.5 其他大模型介绍

    阶段4:AI大模型私有化部署

    • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

    • 内容

      • L4.1 模型私有化部署概述
      • L4.2 模型私有化部署的关键技术
      • L4.3 模型私有化部署的实施步骤
      • L4.4 模型私有化部署的应用场景

    这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

     

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值