大模型本地部署:Ollama+MaxKB 部署本地知识库

前言

本文我们介绍另外一种部署本地知识库的方案:

Ollama + MaxKB

相对来说,容易安装且功能较完善,30 分钟内即可上线基于本地大模型的知识库问答系统,并嵌入到第三方业务系统中。

缺点是如果你的电脑配置不高,问题回答响应时间较长。

下图为 MaxKB 的产品架构:

实现原理上,仍然是应用了 RAG 流程:

安装 MaxKB

首先我们通过 Docker 安装 MaxKB

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data cr2.fit2cloud.com/1panel/maxkb

注意这里镜像源是 china mainland,走代理的镜像会下载失败。

安装成功后访问:http://localhost:8080/ 登录,初始账号为:

用户名: admin
密码: MaxKB@123..

进入系统后是这样的:

配置模型

接下来我们进行最重要的模型配置

可以看到有许多模型的供应商,这里你可以通过 API key 在线去连接大模型

API key 不同的模型厂商有不同的申请地址,这种方式不是本文采用的方式,本文我们将把通过 Ollama 本地部署的 Qwen2 大模型配置到 MaxKB

所以,第一步我们添加模型选择 Ollama

第二步配置模型,在模型添加界面有几个点要注意(下图是修改界面,和添加界面差不多)

  1. 模型名称和基础模型一定要和你在 ollama list 中显示的一样,不然可能会导致没有必要的重复下载和连接失败
  2. API 域名,因为 MaxKB 是 Docker 部署的,Ollama 是本机部署的,不在一个网络环境,所以要填 :host.docker.internal:11434
  3. API Key 随便写什么都行

创建知识库

模型添加完成,就可以创建知识库了。

这个比较简单,通过界面功能自己就能搞定,我就不多说了

这里比较好的是,MaxKB 支持选择文件夹,这一点 AnythingLLM 就不行,不过一次上传文件数量有限:

支持格式:TXT、Markdown、PDF、DOCX、HTML 每次最多上传50个文件,每个文件不超过 100MB 若使用【高级分段】建议上传前规范文件的分段标识

创建应用

知识库创建完,就可以创建应用进行问答了

这里注意除了要为应用添加知识库外,还要进行一下参数设置

我选择的是第二项,因为我的知识库数据量较小

设置完成后点击演示

问答效果展示

这里不太好的是没有同时展示引文,更不用说引文的预览了,实际上这个功能基本上是企业应用上的 刚需

嵌入第三方应用

嵌入三方应用的需求也是比较常见的,比如你可以通过 iframe 或者 js 代码的形式嵌入到你现有的系统中,我们经常看到一些网站右下角的浮窗就是这种形式,在 MaxKB 中支持嵌入三方应用,需要在应用的 “概览” 中点击 “嵌入第三方”

剩下的你只需要把代码集成到你的其他应用中就可以了

思考

学习新知识,最好的方式就是直接去应用它,你可能从来都不知道什么是 RAG,但对相关知识有个大概了解后,通过实践,亲自搭建几个可以 run 起来的应用,那些架构里的结构、名词,逐渐全部都能对应得上了。

我笔记本的配置有限,如果所有的东西都部署在配置有性能强较的显卡的服务器上,那么就可以满足企业级应用的需求了,企业可以直接完成私有化部署并开始应用。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何在本地环境中部署 Ollama 知识库 #### 准备工作 为了成功部署Ollama知识库,需先确认环境满足最低配置需求。通常情况下,一台具备良好网络连接的服务器或个人电脑均可胜任此任务。确保操作系统支持Docker容器运行环境,因为Ollama+MaxKB解决方案依赖于Docker来简化安装过程并提高兼容性[^1]。 #### 安装 Docker 和 Docker Compose 由于Ollama+MaxKB采用Docker镜像分发方式,因此需要预先安装好Docker以及用于管理多容器应用的工具——Docker Compose。对于大多数Linux发行版而言,可以通过官方文档指导完成这两者的快速安装;而对于Windows和MacOS用户,则推荐下载Docker Desktop客户端。 #### 获取 Ollama+MaxKB 镜像文件 访问官方提供的资源页面获取最新的Ollama+MaxKB镜像链接。按照指引拉取所需版本至本地机器上。这一步骤完成后即拥有了构建整个系统的基石。 #### 初始化项目结构与配置参数调整 解压所获得压缩包后会得到一系列预设好的目录及文件模板,其中包括但不限于`docker-compose.yml`这样的核心配置文件。根据实际应用场景修改相应设置项,比如端口映射、存储路径等重要属性,以便更好地适配现有基础设施架构。 #### 启动服务实例 一切准备就绪之后,在命令行界面切换到项目根目录下执行启动指令: ```bash docker-compose up -d ``` 上述操作将以守护进程模式后台运行所有必要的组件和服务,从而实现不到三十分钟内迅速搭建起一套完整的基于本地大型语言模型的知识查询平台,并能够方便地集成进其他业务流程当中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值