一分钟完成DeepSeek本地化部署(附大模型教程)

总体简介

挑战一分钟完成 DeepSeek 本地化部署,再也不用担心数据泄露。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

本地环境介绍:

1、MacBook Pro M3

2、ollama、ollama-ui(chrome 浏览器插件)

ollama 安装

1、ollama 安装

通过 ollama 官网(https://ollama.com/download/mac),下载 mac 版本安装包安装即可。

2、ollama-ui 插件安装

打开 chrome 浏览器,进入应用商店(https://chromewebstore.google.com/search/ollama-ui?hl=zh-CN&utm_source=ext_sidebar),搜索ollama-ui,安装即可。安装好后,在浏览器上角有🦙的图标。

DeepSeep 部署

1、拉取并运行 DeepSeek 模型

ollama run deepseek-r1:7b

看到以下界面,即本地化运行成功

2、问个问题:年轻人留在深圳还是回老家发展?

ui 界面使用

点击浏览器上🦙的图标,进入 ollama-ui

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

### DeepSeek 本地部署方法 对于希望在本地环境中高效运行DeepSeek这款开源且性能强大的大语言模型而言,用户可以遵循一系列具体的操作来完成部署工作[^1]。 #### 安装必备工具 Ollama 首先需安装名为Ollama的灵魂工具。此过程简单快捷,通常只需几分钟便能顺利完成。通过命令`ollama pull deepseek-r1:1.5b-instruct`可拉取适合低配设备使用的1.5B参数量版本的DeepSeek模型[^2]。 ```bash ollama pull deepseek-r1:1.5b-instruct ``` 这一步骤确保了即使硬件资源有限的情况下也能顺利启动并应用该模型。 ### 实现可视化配置 为了使交互更加直观便捷,在完成了基本的环境搭建之后还需要进一步设置可视化的前端界面以便于操作和管理。 #### Chatbox 可视化页面配置 访问[mix688.com](http://mix688.com/)获取Chatbox下载链接,并按照指示进行安装。随后进入设置菜单中的“模型”选项卡,指定API地址为`http://localhost:11434`,最后从列表中挑选之前已经成功加载到系统的DeepSeek模型实例即可开启对话功能。 #### 使用 LM Studio 进行高级定制 除了上述较为简易的方式外,还有其他途径可供选择,比如利用[LmStudio](https://lmstudio.ai/)这一平台来进行更深层次的功能开发与优化调整。它不仅支持多种框架集成还具备丰富的插件生态体系能够满足不同场景下的需求[^3]。 ```python from lm_studio import ModelManager, Visualizer model_manager = ModelManager() visualizer = Visualizer(model=model_manager.load('deepseek')) visualizer.run() ``` 以上就是关于如何在个人计算机上快速建立起属于自己的DeepSeek服务端以及配套图形界面上的一些指导建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值