U-Net 模型教程
U-Net 是一种用于图像分割的深度学习架构,广泛应用于医学图像分割等领域。其关键特点是使用了对称的编码器-解码器结构,通过跳跃连接(skip connections)将编码器部分的特征图传递给解码器部分,帮助恢复图像的细节。本文将带你一起构建一个简单的 U-Net 模型,并逐步解释其组成部分和代码实现。
1. U-Net 模型的基本结构
U-Net 模型由以下几部分组成:
-
Contracting Path(编码器):由多个卷积块(
ConvBlock
)组成,负责提取图像的特征。每个卷积块通常包含两个卷积层,之后使用池化层(MaxPooling
)来降低空间分辨率。 -
Expanding Path(解码器):由多个上采样块(
UpsamplingBlock
)组成,通过反卷积(ConvTranspose2d
)将特征图上采样到更大的尺寸,并将编码器的特征图(通过跳跃连接)融合到解码器中,以便恢复空间分辨率和细节。 -
最终卷积层:在网络的末尾使用卷积层将特征图映射到所需的输出类别数目。
2. U-Net 代码实现
2.1 U-Net 模型
首先,我们定义了 U-Net 模型的主体结构,包括编码器、解码器以及最终的卷积层。
import torch
import torch.nn as nn
class UNetModel(nn.Module):
def __init__(self, input_channels=3, n_filters=32, n_classes=23):
super(UNetModel, self).__init__()
# Contracting Path (encoding)
self.cblock1 = ConvBlock(input_channels, n_filters)
self.cblock2 = ConvBlock(n_filters, n_filters * 2)
self.cblock3 = ConvBlock(n_filters * 2, n_filters * 4)
self.cblock4 = ConvBlock(n_filters * 4, n_filters * 8, dropout=0.3)
self.cblock5 = ConvBlock(n_filters * 8, n_filters * 16, dropout=0.3, max_pooling=False)
# Expanding Path (decoding)
self.ublock6 = UpsamplingBlock(n_filters * 16, n_filters * 8, n_filters * 8)
self.ublock7