U-Net 模型教程(代码:可直接运行)

U-Net 是一种用于图像分割的深度学习架构,广泛应用于医学图像分割等领域。其关键特点是使用了对称的编码器-解码器结构,通过跳跃连接(skip connections)将编码器部分的特征图传递给解码器部分,帮助恢复图像的细节。本文将带你一起构建一个简单的 U-Net 模型,并逐步解释其组成部分和代码实现。

1. U-Net 模型的基本结构

U-Net 模型由以下几部分组成:

  • Contracting Path(编码器):由多个卷积块(ConvBlock)组成,负责提取图像的特征。每个卷积块通常包含两个卷积层,之后使用池化层(MaxPooling)来降低空间分辨率。

  • Expanding Path(解码器):由多个上采样块(UpsamplingBlock)组成,通过反卷积(ConvTranspose2d)将特征图上采样到更大的尺寸,并将编码器的特征图(通过跳跃连接)融合到解码器中,以便恢复空间分辨率和细节。

  • 最终卷积层:在网络的末尾使用卷积层将特征图映射到所需的输出类别数目。

2. U-Net 代码实现

2.1 U-Net 模型

首先,我们定义了 U-Net 模型的主体结构,包括编码器、解码器以及最终的卷积层。

import torch
import torch.nn as nn

class UNetModel(nn.Module):
    def __init__(self, input_channels=3, n_filters=32, n_classes=23):
        super(UNetModel, self).__init__()
        
        # Contracting Path (encoding)
        self.cblock1 = ConvBlock(input_channels, n_filters)
        self.cblock2 = ConvBlock(n_filters, n_filters * 2)
        self.cblock3 = ConvBlock(n_filters * 2, n_filters * 4)
        self.cblock4 = ConvBlock(n_filters * 4, n_filters * 8, dropout=0.3)
        self.cblock5 = ConvBlock(n_filters * 8, n_filters * 16, dropout=0.3, max_pooling=False)
        
        # Expanding Path (decoding)
        self.ublock6 = UpsamplingBlock(n_filters * 16, n_filters * 8, n_filters * 8)
        self.ublock7 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洪小帅

靓仔靓女看过来~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值