2020张宇1000题【好题收集】【第十章:线性代数(三)】

这篇博客详细探讨了线性代数中特征值和特征向量的相关理论和证明,包括它们的性质、相互关系及应用。文章通过一系列的证明题和例子,阐述了特征值的性质,如λ1λ2...λn=∣A∣、λ1+λ2+...+λn=tr(A),以及特征向量的性质,如特征向量的和不是特征向量、矩阵乘幂的特征值等。此外,还讨论了相似矩阵的特征值和特征向量的关系,并提供了多个相关的证明题和解题思路。
摘要由CSDN通过智能技术生成

特征值与特征向量

一些结论

①: λ 1 λ 2 . . . λ n = ∣ A ∣ \lambda_1\lambda_2...\lambda_n=|A| λ1λ2...λn=A
②: λ 1 + λ 2 + . . . + λ n = t r ( A ) \lambda_1+\lambda_2+...+\lambda_n=tr(A) λ1+λ2+...+λn=tr(A)
③: A X = 0 ⇒ λ = 0 也 是 其 中 的 一 个 特 征 向 量 AX=0\Rightarrow \lambda=0也是其中的一个特征向量 AX=0λ=0
④: A 的 特 征 值 为 λ 1 , λ 2 , . . . , λ 1 则 ⇒ k E + A n 的 特 征 值 为 k + λ 1 n , k + λ 2 n , . . . , k + λ n n A的特征值为\lambda_1,\lambda_2,...,\lambda_1则\Rightarrow kE+A^n的特征值为k+\lambda_1^n,k+\lambda_2^n,...,k+\lambda_n^n Aλ1,λ2,...,λ1kE+Ank+λ1n,k+λ2n,...,k+λnn
⑤: A 与 B 相 似 只 能 说 明 特 征 值 相 同 , 但 是 特 征 向 量 不 一 定 相 同 , 并 且 A 和 B 不 一 定 阔 以 对 角 化 A与B相似只能说明特征值相同,但是特征向量不一定相同,并且A和B不一定阔以对角化 AB,,AB
⑥: α β T 的 特 征 值 为 { 0 , ( n − 1 ) 重 根 α T β \alpha\beta^T的特征值为\left\{\begin{matrix} 0,(n-1)重根\\ \\ \alpha^T\beta \end{matrix}\right. αβT0,(n1)αTβ
A = α β T A=\alpha\beta^T A=αβT
A α = ( α β T ) α = α ( β T α ) , 其 中 α T β = β T α 是 一 个 数 A\alpha=(\alpha\beta^T)\alpha=\alpha(\beta^T\alpha),其中\alpha^T\beta=\beta^T\alpha是一个数 Aα=(αβT)α=α(βTα),αTβ=βTα
⑦:
关于特征值:
A 是 λ ⇔ A T 是 λ        阔 以 加 个 转 置 符 号 后 行 列 式 的 值 不 得 变 这 样 来 证 : ∣ ( λ E − A ) ∣ = ∣ ( λ E − A ) T ∣ = ∣ ( λ E − A T ) ∣ A是\lambda\Leftrightarrow A^T是\lambda\ \ \ \ \ \ 阔以加个转置符号后行列式的值不得变这样来证:|(\lambda E-A)|=|(\lambda E-A)^T|=|(\lambda E-A^T)| AλATλ      :(λEA)=(λEA)T=(λEAT)
A 是 λ ⇒ A ∗ 是 ∣ A ∣ λ        反 过 来 就 不 行 , 因 为 当 r ( A ) < n − 1 的 时 候 , A ∗ = O , 因 此 任 意 的 非 零 列 向 量 都 是 他 的 特 征 向 量 A是\lambda\Rightarrow A^*是\frac{|A|}{\lambda}\ \ \ \ \ \ 反过来就不行,因为当r(A)<n-1的时候,A^*=O,因此任意的非零列向量都是他的特征向量 AλAλA      r(A)<n1,A=O,
A 是 λ ⇒ A 2 是 λ         同 样 也 是 反 过 来 就 不 行 , 因 为 设 A β 1 = β 1 , A β 2 = − β 2 , 那 么 A 2 ( β 1 + β 2 ) = β 1 + β 2 , 而 特 征 向 量 的 和 不 是 特 征 向 量 , 所 以 反 过 来 不 行 A是\lambda\Rightarrow A^2是\lambda\ \ \ \ \ \ \ 同样也是反过来就不行,因为设A\beta_1=\beta_1,A\beta_2=-\beta_2,那么A^2(\beta_1+\beta_2)=\beta_1+\beta_2,而特征向量的和不是特征向量,所以反过来不行 AλA2λ       ,Aβ1=β1,Aβ2=β2,A2(β1+β2)=β1+β2,,
A 是 λ ⇔ k A 是 λ A是\lambda\Leftrightarrow kA是\lambda AλkAλ
关于特征向量:
A , A T 的 特 征 矩 阵 没 啥 关 系 , 想 一 哈 哇 , 特 征 值 都 已 经 相 等 了 , 特 征 向 量 再 相 同 的 话 , 那 这 两 个 矩 阵 就 是 同 一 个 矩 阵 了 ( 前 提 是 要 可 对 角 化 ) A,A^T的特征矩阵没啥关系,想一哈哇,特征值都已经相等了,特征向量再相同的话,那这两个矩阵就是同一个矩阵了(前提是要可对角化) A,AT,,,
A 是 α ⇒ A ∗ 是 α A是\alpha\Rightarrow A^*是\alpha AαAα

A 是 α ⇒ A 2 是 α A是\alpha\Rightarrow A^2是\alpha AαA2α

A 是 α ⇒ k A 是 α A是\alpha\Rightarrow kA是\alpha AαkAα

158

A 与 B 相 似 , 下 列 正 确 的 是 A与B相似,下列正确的是 AB,
(A) λ E − A = λ E − B \lambda E-A=\lambda E-B λEA=λEB
(B) A 与 B 有 相 同 的 特 征 值 与 特 征 向 量 A与B有相同的特征值与特征向量 AB
(C) A 与 B 都 相 似 与 同 一 个 对 角 阵 A与B都相似与同一个对角阵 AB
(D) 对 于 任 意 常 数 t , 有 t E − A 与 t E − B 相 似 对于任意常数t,有tE-A与tE-B相似 t,tEAtEB

A选项感觉就是用来靠反应的,没说 λ \lambda λ是特征值,所以当然不成立啦
B选项特征值相同但是特征向量不相同,不然都是 P − 1 Λ P P^{-1}\Lambda P P1ΛP那不是相等的两个矩阵了蛮
C选项又是靠反应,如果都阔以对角化那肯定是相同的,因为这个对角阵就是用特征值组成的嘛,但关键就是不一定阔以对角化呀
D选项看答案才知道的
t E − B = P − 1 t E P − P − 1 A P = P − 1 ( t E − A ) P tE-B=P^{-1}tEP-P^{-1}AP=P^{-1}(tE-A)P tEB=P1tEPP1AP=P1(tEA)P

167【证明题:特征向量的和不是特征向量】

λ 1 , λ 2 , X 1 , X 2 分 别 是 A 矩 阵 的 两 个 不 同 的 特 征 值 和 特 征 向 量 , 证 明 : X 1 + X 2 不 是 A 的 特 征 向 量 \lambda_1,\lambda_2,X_1,X_2分别是A矩阵的两个不同的特征值和特征向量,证明:X_1+X_2不是A的特征向量 λ1,λ2,X1,X2A,X1+X2A
说了反正法我感觉还是不晓得怎么个反证的
A ( X 1 + X 2 ) = λ ( X 1 + X 2 ) A(X_1+X_2)=\lambda(X_1+X_2) A(X1+X2)=λ(X1+X2)
然后代入特征值移项,要弄出:

( λ 1 − λ ) X 1 + ( λ 2 − λ ) X 2 = 0 (\lambda_1-\lambda)X_1+(\lambda_2-\lambda)X_2=0 (λ1λ)X1+(λ2λ)X2=0

然后要反应出 X 1 , X 2 X_1,X_2 X1,X2线性无关,这个应该是个得分点
因此要等式成立就只能让 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ这样就矛盾了就证到了

171【 A ∗ , A T A^*,A^T A,AT的特征值】

A 是 n 阶 矩 阵 , 下 列 正 确 的 是 A是n阶矩阵,下列正确的是 An,
(A) 若 α 为 A T 的 特 征 向 量 , 那 么 α 也 为 A 的 特 征 向 量 若\alpha为A^T的特征向量,那么\alpha也为A的特征向量 αAT,αA

(B) 若 α 为 A ∗ 的 特 征 向 量 , 那 么 α 也 为 A 的 特 征 向 量 若\alpha为A^*的特征向量,那么\alpha也为A的特征向量 αA,αA

(C) 若 α 为 A 2 的 特 征 向 量 , 那 么 α 也 为 A 的 特 征 向 量 若\alpha为A^2的特征向量,那么\alpha也为A的特征向量 αA2,αA

(D) 若 α 为 2 A 的 特 征 向 量 , 那 么 α 也 为 A 的 特 征 向 量 若\alpha为2A的特征向量,那么\alpha也为A的特征向量 α2A,αA
D这个正确答案还是比较容易选出来的,但是其他的错在哪里却没那么容易找出来

比如A,我还不知道 A T A^T AT的特征值与 A A A是相等的,其他的都弄到上面作为结论了~

179【秩为1的方阵的特征值】

n 阶 矩 阵 的 元 素 全 是 1 , 则 A 的 n 个 特 征 值 是 n阶矩阵的元素全是1,则A的n个特征值是 n1,An
答案是 { 0 , ( n − 1 ) 重 根 n \left\{\begin{matrix} 0,(n-1)重根\\ \\ n \end{matrix}\right. 0,(n1)n
因此这道题阔以写成 α β T \alpha\beta^T αβT这个样子,所以很快就能得到答案

181【证明题:特征向量之间线性无关】

( 1 ) λ 1 , λ 2 , . . . , λ n 是 互 异 的 特 征 值 , α 1 , α 2 , . . . , α n 为 对 应 特 征 向 量 , 证 明 : α 1 , α 2 , . . . , α n 线 性 无 关 (1)\lambda_1,\lambda_2,...,\lambda_n是互异的特征值,\alpha_1,\alpha_2,...,\alpha_n为对应特征向量,证明:\alpha_1,\alpha_2,...,\alpha_n线性无关 (1)λ1,λ2,...,λn,α1,α2,...,αn,:α1,α2,...,αn线
这个很牛皮呀,归纳着来证明的,用 α 1 , α 2 , . . . , α k − 1 \alpha_1,\alpha_2,...,\alpha_{k-1} α1,α2,...,αk1线性无关来证明 α 1 , α 2 , . . . , α k − 1 , α k \alpha_1,\alpha_2,...,\alpha_{k-1},\alpha_k α1,α2,...,αk1,αk线性无关

设有 l 1 α 1 + l 2 α 2 + . . . + l k α k = 0 l_1\alpha_1+l_2\alpha_2+...+l_k\alpha_k=0 l1α1+l2α2+...+lkαk=0
两边同时乘上A以及同时乘上 λ k \lambda_k λk就有

{ l 1 λ 1 α 1 + l 2 λ 2 α 2 + . . . + l k λ k α k = 0 l 1 λ k α 1 + l 2 λ k α 2 + . . . + l k λ k α k = 0 \left\{\begin{matrix} l_1\lambda_1\alpha_1+l_2\lambda_2\alpha_2+...+l_k\lambda_k\alpha_k=0\\ \\ l_1\lambda_k\alpha_1+l_2\lambda_k\alpha_2+...+l_{k}\lambda_k\alpha_{k}=0 \end{matrix}\right. l1λ1α1+l2λ2α2+...+lkλkαk=0l1λkα1+l2λkα2+...+lkλkαk=0

上式减去下式:

l 1 ( λ 1 − λ k ) α 1 + l 2 ( λ 2 − λ k ) α 2 + . . . + l k − 1 ( λ k − 1 − λ k ) α k − 1 = 0 l_1(\lambda_1-\lambda_k)\alpha_1+l_2(\lambda_2-\lambda_k)\alpha_2+...+l_{k-1}(\lambda_{k-1}-\lambda_k)\alpha_{k-1}=0 l1(λ1λk)α1+l2(λ2λk)α2+...+lk1(λk1λk)αk1=0
而这 k − 1 k-1 k1 α \alpha α是线性无关的,所以系数是只有全为0才成立,然后再把这个带进最上面的式子就能得到 l k l_k lk也等于0
( 2 ) A , B 为 n 阶 方 阵 , ∣ B ∣ 不 等 于 0 , 若 ∣ λ B − A ∣ = 0 的 全 部 根 λ 1 , λ 2 , . . . , λ n 互 异 , α i 是 ( λ i B − A ) X = 0 的 非 零 解 , 证 明 : α 1 , α 2 , . . . , α n 线 性 无 关 (2)A,B为n阶方阵,|B|不等于0,若|\lambda B-A|=0的全部根\lambda_1,\lambda_2,...,\lambda_n互异,\alpha_i是(\lambda_i B-A)X=0的非零解,证明:\alpha_1,\alpha_2,...,\alpha_n线性无关 (2)A,Bn,B0,λBA=0λ1,λ2,...,λn,αi(λiBA)X=0,:α1,α2,...,αn线
这个长得就跟求特征值的那个差不多,因此阔以把他弄成那个样子,两边右乘 B − 1 B^{-1} B1
{ ∣ λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值