线性代数小课堂之线性代数中极大无关组的向量个数与秩以及解空间的维数的关系

一、核心结论:

  1. 一个向量组的极大线性无关组所含向量的个数,等于该向量组的秩。

  2. n - r (其中 n 是未知数的个数,即系数矩阵的列数;r 是系数矩阵的秩) 是齐次线性方程组 Ax = 0 的解空间(或称零空间)的维数。

二、为什么极大无关组的向量个数等于秩?

  1. 定义决定: 秩 (rank) 的根本定义之一就是一个向量组中极大线性无关组所含向量的个数

    • 极大线性无关组:它是向量组的一个部分组,满足两个条件:(a) 这个部分组本身是线性无关的;(b) 从原向量组的其余向量中任取一个添加进来,得到的新的部分组都线性相关(也就是说,这个部分组已经“极大”了,不能再添加新的向量而不破坏线性无关性)。

    • 秩:就是满足上述条件的部分组的大小(所含向量的个数)。

    • 因此,根据定义,秩 r 就是极大无关组中向量的个数。 说“极大无关组的向量个数等于秩”就是在说“极大无关组的向量个数等于极大无关组的向量个数”,这是一个同义反复。

  2. 理解向量组本身: 当我们谈论一个向量组 α₁, α₂, ..., αₘ 的秩和极大无关组时,我们关注的是这些向量本身之间的线性关系。秩 r 告诉我们:

    • 这个向量组中最多有多少个向量是线性无关的。

    • 这 r 个线性无关的向量(即极大无关组)张成了原向量组所能张成的空间(称为列空间,如果这些向量是矩阵的列),这个空间的维数就是 r。

    • 向量组中任何一个向量都可以由这 r 个向量(极大无关组)线性表出

三、n - r 是什么?

  • n - r 这个表达式通常出现在线性方程组的上下文中,特别是齐次线性方程组 Ax = 0

  • 设 A 是一个 m × n 矩阵:

    • n 代表未知数的个数,也就是矩阵 A 的列数

    • r 代表矩阵 A 的 (Rank(A) = r)。秩 r 本质上就是 A 的列向量组的秩,也就是 A 的列向量构成的极大无关组的大小。

  • 齐次线性方程组 Ax = 0 的解集合构成一个向量空间,称为解空间或零空间。

  • 解空间的维数等于 n - r。

  • 这意味着,要描述齐次方程 Ax = 0 的所有解,你需要 n - r 个线性无关的解向量(称为基础解系)。这个基础解系就是解空间的一个极大无关组(基)。

总结与澄清混淆:

概念含义大小/维数所属对象
向量组的极大无关组向量组中线性无关且个数达到最大的部分组r原向量组本身
向量组的秩 (r)等于其极大无关组所含向量的个数r原向量组本身
齐次方程组解空间齐次线性方程组 Ax = 0 的所有解构成的向量空间n - r方程组的解集合
解空间的基(基础解系)解空间的一个极大无关组n - r方程组的解集合

关键区分:

  • 极大无关组 (大小 r) 是针对原始的向量组(比如矩阵 A 的列向量组)而言的。这些向量是输入的一部分。

  • 基础解系 (大小 n - r) 是针对齐次线性方程组的解构成的集合而言的。这些向量是输出(解)。

简单例子:

考虑矩阵 A 和齐次方程组 Ax = 0:

    A = [1  2  3]
        [2  4  6]
        [3  6  9]
  • 秩 (r): A 的秩 r = 1 (因为所有行/列成比例)。

  • 列向量组: α₁ = [1, 2, 3]ᵀ, α₂ = [2, 4, 6]ᵀ, α₃ = [3, 6, 9]ᵀ。

  • 极大无关组: 这个向量组的极大无关组可以是 {α₁}(或者 {α₂},或者 {α₃})。它只包含 1 个向量(因为 r = 1)。α₂ 和 α₃ 都可以由 α₁ 线性表出 (α₂ = 2α₁, α₃ = 3α₁)。

  • 未知数个数 (n): n = 3 (因为 A 有 3 列)。

  • 解空间维数: n - r = 3 - 1 = 2

  • 基础解系: 解空间需要一个包含 2 个线性无关解向量的基础解系,例如 ξ₁ = [-2, 1, 0]ᵀ, ξ₂ = [-3, 0, 1]ᵀ。Ax = 0 的任何解都可以表示为 ξ₁ 和 ξ₂ 的线性组合。

结论:
描述原始向量组结构的概念 (秩 r, 极大无关组大小 r) 和描述齐次方程组解空间结构的概念 (维数 n - r) 是很容易混淆的。极大无关组的向量个数严格等于该向量组的秩 r。 n - r 描述的是齐次方程组解空间的维数,与原始向量组的极大无关组大小是完全不同的概念,尽管两者通过秩 r 相关联。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值