一、核心结论:
-
一个向量组的极大线性无关组所含向量的个数,等于该向量组的秩。
-
n - r (其中 n 是未知数的个数,即系数矩阵的列数;r 是系数矩阵的秩) 是齐次线性方程组 Ax = 0 的解空间(或称零空间)的维数。
二、为什么极大无关组的向量个数等于秩?
-
定义决定: 秩 (rank) 的根本定义之一就是一个向量组中极大线性无关组所含向量的个数。
-
极大线性无关组:它是向量组的一个部分组,满足两个条件:(a) 这个部分组本身是线性无关的;(b) 从原向量组的其余向量中任取一个添加进来,得到的新的部分组都线性相关(也就是说,这个部分组已经“极大”了,不能再添加新的向量而不破坏线性无关性)。
-
秩:就是满足上述条件的部分组的大小(所含向量的个数)。
-
因此,根据定义,秩 r 就是极大无关组中向量的个数。 说“极大无关组的向量个数等于秩”就是在说“极大无关组的向量个数等于极大无关组的向量个数”,这是一个同义反复。
-
-
理解向量组本身: 当我们谈论一个向量组 α₁, α₂, ..., αₘ 的秩和极大无关组时,我们关注的是这些向量本身之间的线性关系。秩 r 告诉我们:
-
这个向量组中最多有多少个向量是线性无关的。
-
这 r 个线性无关的向量(即极大无关组)张成了原向量组所能张成的空间(称为列空间,如果这些向量是矩阵的列),这个空间的维数就是 r。
-
向量组中任何一个向量都可以由这 r 个向量(极大无关组)线性表出。
-
三、n - r 是什么?
-
n - r 这个表达式通常出现在线性方程组的上下文中,特别是齐次线性方程组 Ax = 0。
-
设 A 是一个 m × n 矩阵:
-
n 代表未知数的个数,也就是矩阵 A 的列数。
-
r 代表矩阵 A 的秩 (Rank(A) = r)。秩 r 本质上就是 A 的列向量组的秩,也就是 A 的列向量构成的极大无关组的大小。
-
-
齐次线性方程组 Ax = 0 的解集合构成一个向量空间,称为解空间或零空间。
-
解空间的维数等于 n - r。
-
这意味着,要描述齐次方程 Ax = 0 的所有解,你需要 n - r 个线性无关的解向量(称为基础解系)。这个基础解系就是解空间的一个极大无关组(基)。
总结与澄清混淆:
概念 | 含义 | 大小/维数 | 所属对象 |
---|---|---|---|
向量组的极大无关组 | 向量组中线性无关且个数达到最大的部分组 | r | 原向量组本身 |
向量组的秩 (r) | 等于其极大无关组所含向量的个数 | r | 原向量组本身 |
齐次方程组解空间 | 齐次线性方程组 Ax = 0 的所有解构成的向量空间 | n - r | 方程组的解集合 |
解空间的基(基础解系) | 解空间的一个极大无关组 | n - r | 方程组的解集合 |
关键区分:
-
极大无关组 (大小 r) 是针对原始的向量组(比如矩阵 A 的列向量组)而言的。这些向量是输入的一部分。
-
基础解系 (大小 n - r) 是针对齐次线性方程组的解构成的集合而言的。这些向量是输出(解)。
简单例子:
考虑矩阵 A 和齐次方程组 Ax = 0:
A = [1 2 3] [2 4 6] [3 6 9]
-
秩 (r): A 的秩 r = 1 (因为所有行/列成比例)。
-
列向量组: α₁ = [1, 2, 3]ᵀ, α₂ = [2, 4, 6]ᵀ, α₃ = [3, 6, 9]ᵀ。
-
极大无关组: 这个向量组的极大无关组可以是 {α₁}(或者 {α₂},或者 {α₃})。它只包含 1 个向量(因为 r = 1)。α₂ 和 α₃ 都可以由 α₁ 线性表出 (α₂ = 2α₁, α₃ = 3α₁)。
-
未知数个数 (n): n = 3 (因为 A 有 3 列)。
-
解空间维数: n - r = 3 - 1 = 2。
-
基础解系: 解空间需要一个包含 2 个线性无关解向量的基础解系,例如 ξ₁ = [-2, 1, 0]ᵀ, ξ₂ = [-3, 0, 1]ᵀ。Ax = 0 的任何解都可以表示为 ξ₁ 和 ξ₂ 的线性组合。
结论:
描述原始向量组结构的概念 (秩 r, 极大无关组大小 r) 和描述齐次方程组解空间结构的概念 (维数 n - r) 是很容易混淆的。极大无关组的向量个数严格等于该向量组的秩 r。 n - r 描述的是齐次方程组解空间的维数,与原始向量组的极大无关组大小是完全不同的概念,尽管两者通过秩 r 相关联。