【数学建模】——【线性规划】及其在资源优化中的应用

目录

线性规划问题的两类主要应用:

线性规划的数学模型的三要素:

线性规划的一般步骤:

  例1: 人数选择

 例2 :任务分配问题 

例3: 饮食问题

线性规划模型 

线性规划的模型一般可表示为

线性规划的模型标准型:

例4.生产计划问题

非线性规划模型 

非线性规划问题的标准形式为:

非线性规划模型按约束条件可分为以下三类: 

⑴ 无约束非线性规划模型:

⑵ 等式约束非线性规划模型: 

⑶ 不等式约束非线性规划模型:

多目标规划模型 

 整数规划

动态规划 

​编辑

总结 


ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

专栏:数学建模学习笔记

线性规划(Linear Programming,简称LP)是运筹学的一个重要分支,主要研究在给定的约束条件下如何找到目标函数的最大值或最小值。线性规划在生产管理和经济活动中具有广泛应用,能够帮助我们合理地利用有限的资源以获得最佳的经济效益。

线性规划问题的两类主要应用:

  1. 资源优化利用问题:如何在给定的任务下,合理安排资源,使得所需的人力和物力资源最少。
  2. 任务最大化问题:在一定量的人力、物力资源下,如何安排使用这些资源,使得完成的任务(或创造的利润)最多。

线性规划的数学模型的三要素:

线性约束条件:列出若干个与自变量(未知量)相关的线性约束条件(等式或不等式)。这些约束条件通常表示资源的限制。

例如:

变量取值限制

定义自变量 xj​ 的取值范围,可以是非负约束(如 xj​≥0),也可以是无限制取值。

例如:

 

目标函数:定义关于自变量的线性目标函数,目标是使其极大化或极小化。

例如:

其中,前两条称为可行条件,最后一条称为优化条件。符合这三个条件的数学模型通常称为线性规划的一般型(general form)。

线性规划的一般步骤:

  1. 建立模型:将实际问题转化为线性规划模型,定义变量、目标函数和约束条件。
  2. 求解模型:使用线性规划算法(如单纯形法、内点法等)求解模型,找到最优解。
  3. 结果分析:对求解结果进行分析和解释,验证其在实际问题中的可行性和有效性。

通过线性规划方法,可以在各种实际问题中进行合理的资源分配和优化,为决策者提供科学的依据和支持。

  例1: 人数选择

某厂每日8 小时的产量不低于1800 件。为了进行质量控
制,计划聘请两种不同水平的检验员。一级检验员的标准为:
速度25 件/ 小时,正确率98% ,计时工资4 元/ 小时;二级检验员
的标准为:速度15 件/ 小时 ,正确率95% ,计时工资3 元/ 小时。
检验员每错检一次,工厂要损失2 元。为使总检验费用最省,
该工厂应聘一级、二级检验员各几名?


解: 设需要一级和二级检验员的人数分别为x 1 、x 2 人 人,
则应付检验员的工资为:

因检验员错检而造成的损失为:

 故目标函数为:

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李很执着

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值