目录
专栏:数学建模学习笔记
线性规划(Linear Programming,简称LP)是运筹学的一个重要分支,主要研究在给定的约束条件下如何找到目标函数的最大值或最小值。线性规划在生产管理和经济活动中具有广泛应用,能够帮助我们合理地利用有限的资源以获得最佳的经济效益。
线性规划问题的两类主要应用:
- 资源优化利用问题:如何在给定的任务下,合理安排资源,使得所需的人力和物力资源最少。
- 任务最大化问题:在一定量的人力、物力资源下,如何安排使用这些资源,使得完成的任务(或创造的利润)最多。
线性规划的数学模型的三要素:
线性约束条件:列出若干个与自变量(未知量)相关的线性约束条件(等式或不等式)。这些约束条件通常表示资源的限制。
例如:
变量取值限制:
定义自变量 xj 的取值范围,可以是非负约束(如 xj≥0),也可以是无限制取值。
例如:
目标函数:定义关于自变量的线性目标函数,目标是使其极大化或极小化。
例如:
其中,前两条称为可行条件,最后一条称为优化条件。符合这三个条件的数学模型通常称为线性规划的一般型(general form)。
线性规划的一般步骤:
- 建立模型:将实际问题转化为线性规划模型,定义变量、目标函数和约束条件。
- 求解模型:使用线性规划算法(如单纯形法、内点法等)求解模型,找到最优解。
- 结果分析:对求解结果进行分析和解释,验证其在实际问题中的可行性和有效性。
通过线性规划方法,可以在各种实际问题中进行合理的资源分配和优化,为决策者提供科学的依据和支持。
例1: 人数选择
某厂每日8 小时的产量不低于1800 件。为了进行质量控
制,计划聘请两种不同水平的检验员。一级检验员的标准为:
速度25 件/ 小时,正确率98% ,计时工资4 元/ 小时;二级检验员
的标准为:速度15 件/ 小时 ,正确率95% ,计时工资3 元/ 小时。
检验员每错检一次,工厂要损失2 元。为使总检验费用最省,
该工厂应聘一级、二级检验员各几名?
解: 设需要一级和二级检验员的人数分别为x 1 、x 2 人 人,
则应付检验员的工资为:
因检验员错检而造成的损失为:
故目标函数为: