二重积分的概念
二重积分的不等式性质性质
二重积分的保号性
一个二元函数大于另一个二元函数,其二重积分同样大于另一个二元函数的二重积分。
二重积分的大于小于定理
二元函数f(x,y)的值在m与M之间,二重积分在两者定义域面积的乘积之间
二重积分的绝对值不等式
二重积分的中值定理
跟一元定积分类似,使用拉格朗日中值定理推出来的,只不过形式大不相同。
二重积分的计算
极坐标注意事项:
别忘了积分函数还有ρ,且不要与定积分应用中的极坐标求平面面积公式搞混。
适合极坐标的二重积分特征
积分域指的是底面的定义域,定义域为圆形或者扇形的部分图形。
圆的圆心不在坐标轴上
二重积分对称性
奇偶对称性
注意:二重积分也有线性可加性
用线性可加性处理部分有奇偶性的积分
轮换对称性
x与y可以互换位置,y=x对称,函数图像如下
轮换对称性的性质
被积函数中二元函数的x,y可以互换,互换前和互换后的二重积分加起来乘1/2等于该二元函数的二重积分。
也可以对二重积分中的只含x的被积函数和只含y的被积函数转化成同时含x和y的被积函数之和,也可以直接替换只含x的被积函数和只含y的被积函数
对二重积分中的只含x的被积函数和只含y的被积函数转化成同时含x和y的被积函数之和:
直接替换二重积分中只含x的被积函数和只含y的被积函数
交换累次积分次序
被积函数积不出,可以尝试交换积分顺序来解决。
积分次序交换方法
画域:对先积分部分反推函数图像,再根据后积分部分定图像面积
定限:根据画出的图像,重新建立一个新的二重积分