UNet 改进(22):结合Transformer结构

1.介绍

本文将深入解析一个结合了传统卷积神经网络(CNN)和Transformer的混合架构,该架构基于经典的UNet模型,并在瓶颈层引入了Transformer模块以增强全局上下文建模能力。

架构概述

这个网络是一个改进版的UNet架构,主要特点包括:

  1. 保留了UNet的经典编码器-解码器结构
  2. 在瓶颈层使用Transformer替代传统的卷积层
  3. 采用跳跃连接保持空间细节信息
  4. 使用双卷积块(DoubleConv)作为基础构建模块

核心组件详解

1. DoubleConv模块

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值