1.介绍
本文将详细介绍一个改进的Vision Transformer (ViT)模型实现,该模型在标准的ViT架构中集成了ASPP (Atrous Spatial Pyramid Pooling)模块,以增强模型的多尺度特征提取能力。
代码概述
这段代码主要实现了两个核心部分:
- ASPP模块:一个多尺度特征提取模块,最初用于语义分割任务
- 改进的ViT模型:在标准ViT的patch嵌入层后添加ASPP模块
ASPP模块详解
ASPP模块通过并行使用不同扩张率的空洞卷积和全局平均池化来捕获多尺度上下文信息。
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels=256, atrous_rates=[6, 12, 18]):
super(ASPP, self).__init__()
# 初始化代码...
模块组成
-
1×1卷积分支:
• 标准的1×1卷积,用于捕获局部特征• 包含卷积层、批归一化和ReLU