VisionTransformer改进(7):集成ASPP模块增强多尺度特征提取能力

1.介绍

本文将详细介绍一个改进的Vision Transformer (ViT)模型实现,该模型在标准的ViT架构中集成了ASPP (Atrous Spatial Pyramid Pooling)模块,以增强模型的多尺度特征提取能力。

代码概述

这段代码主要实现了两个核心部分:

  1. ASPP模块:一个多尺度特征提取模块,最初用于语义分割任务
  2. 改进的ViT模型:在标准ViT的patch嵌入层后添加ASPP模块

ASPP模块详解

ASPP模块通过并行使用不同扩张率的空洞卷积和全局平均池化来捕获多尺度上下文信息。

class ASPP(nn.Module):
    def __init__(self, in_channels, out_channels=256, atrous_rates=[6, 12, 18]):
        super(ASPP, self).__init__()
        # 初始化代码...

模块组成

  1. 1×1卷积分支:
    • 标准的1×1卷积,用于捕获局部特征

    • 包含卷积层、批归一化和ReLU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值