频频登顶Nature子刊!UNet为何这么好发高区?

UNet改进太好发文了!频频登上Nature子刊和顶会!比如一种通过引入Transformer的UNet结构,便在甲烷检测任务中性能狂飙10倍;模型LightM-UNet则通过与Mamba结合,参数量狂降116倍……

主要在于,作为图像分割领域的经典模型,其不仅结构简单,更是以效果拔群著称!但是,其也一直面临过拟合、结构固定、语义信息不全、输入图像尺寸限制、长距离相关性信息处理困难等问题,严重限制了其在诸多领域的运用。因而对其的改进迫在眉睫,成为学术界的热门研究方向。

目前改进的思路主要围绕: ·模型架构改进:除前文所提,还有与注意力、小波变换、强化学习、KAN等热门技术结合; ·训练策略优化:像是数据增强、损失函数调整等。

为方便大家研究的进行,每种方法我都给大家准备了参考论文和源码,共38篇,一起来看!

论文原文+开源代码需要的同学看文末

UNet+Transformer

Automatic detection of methane emissions in multispectral satellite imageryusing a vision transformer

内容:文章介绍了一种基于Vision Transformer的深度学习架构,该架构能够自动检测多光谱卫星图像中的甲烷排放,并从噪声中分离出甲烷信号。这项技术显著提高了甲烷检测能力,能够检测到比现有技术小一个数量级的排放量,对于全球气候变化对抗和甲烷排放减少具有重要意义。

UNet+Mamba

Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation

内容:文章介绍了Mamba-UNet,这是一种基于纯视觉Mamba(VMamba)的UNet风格的网络,用于医学图像分割。Mamba-UNet结合了U-Net的对称编码器-解码器结构和跳跃连接,以及Mamba架构处理长序列和全局上下文信息的能力,以提高医学图像中长距离依赖关系的建模效率。实验结果表明,Mamba-UNet在MRI心脏多结构分割数据集上的表现优于UNet和Swin-UNet。

UNet+小波变换

Retina image 深度之眼整理segmentation using the three-path Unet model

内容:文章介绍了一种基于三路径Unet模型的视网膜图像分割方法,该方法通过结合Haar小波变换、自编码器(AE)和深度监督学习(DSL)技术,提高了视网膜血管分割的精度和准确性。在DRIVE和CHASE公共数据集上的实验结果表明,该模型在Dice系数、敏感性指数和准确度等指标上均优于传统的Unet模型,对于辅助医生进行眼科疾病诊断具有重要意义。

UNet+强化学习

Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning

内容:文章介绍了一种基于偏好的强化学习方法,用于主题驱动的文本到图像生成。研究者们提出了一个λ-Harmonic奖励函数,该函数可以提供可靠的奖励信号,实现早期停止以加速训练并有效正则化。通过结合Bradley-Terry偏好模型,该方法在只需要少量负样本和梯度步骤的情况下,就能实现高质量的文本到图像对齐。

UNet+特征融合

2T-UNET: A Two-Tower UNet with Depth Clues for Robust Stereo Depth Estimation

内容:论文介绍了一种名为2T-UNet的新型双塔UNet架构,用于鲁棒的立体深度估计。该架构通过两个具有不同权重的卷积塔来替代传统的成本体积构建,并且利用单目深度线索来增强预测场景几何的质量。2T-UNet在复杂的自然场景中表现出色,超越了现有的单目和立体深度估计方法,具有实时应用的潜力。

损失函数优化

DCDR-UNet: Deformable Convolution Based Detail Restoration via U-shape Network for Single Image HDR Reconstruction

内容:论文介绍了一种名为DCDR-UNet的新型深度神经网络,用于单图像高动态范围(HDR)重建。该网络通过引入可变形卷积和一种新的损失函数,有效地恢复过曝区域的细节,并通过实验结果证明了其在定量和定性上都优于现有的方法。DCDR-UNet的核心在于DCRB,它结合了偏移估计、可变形卷积和空间特征变换层,使得网络能够自适应地学习每个像素位置的感受野,从而更好地恢复过曝对象的细节。

码字不易,欢迎大家点赞评论收藏!

关注下方《AI科研技术派》

回复【U魔改】获取完整论文

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值