最近接触到想要复刻搭建智能体案例的小伙伴,但其对Coze平台的使用熟练度都不是很高。多数都属于初识阶段,面对学习中的卡点无从下手,这里对AI智能体以及Coze基础进行一次整体的介绍。
认识AI Agent
Generative AI Application Level
Level | 描述 | 示例 |
L1 Tool | 人类完成所有工作,没有任何明显的AI辅助 | 绝大部分应用 |
L2 Chatbot | 人类直接完成绝大部分工作。人类向AI询问意见,了解信息,AI提供信息和建议但不直接处理工作 | 初代ChatGPT |
L3 Copilot | 人类和AI进行写作,工作量相当。AI根据人类要求完成工作初稿,人类进行目标设定、修改调整,最后确认 | Github Copilot, Midjourney, ChatGPT |
L4 Agent | AI完成绝大部分工作,人类负责设定目标、提供资源和监督结果。AI完成任务拆分、工具选择、进度控制,实现目标后自动结束工作 | AutoGPT、Dify、Coze? |
L5 Intelligence | 完全无需人类监督,AI自主拆解目标,寻找资源,选择并使用工具,完成全部工作,人类只需给出初始目标 | Manus、AutoGLM |
大模型的缺陷
-
1. 训练数据的时效性问题:由于训练数据的时效性,导致大模型无法回答训练数据日期之后的知识。
- 持续更新数据:定期更新模型的训练数据,以包含最新的信息。
- 实时数据接入:在模型中集成实时数据源,使其能够访问最新的信息。
- 混合模型:结合使用大模型和小模型,小模型专门处理最新的数据和信息。
- 解决方案:
-
2. 公开数据的限制:由于大模型使用的是公开数据,针对企业私有数据的问题,无法进行回答。
- 私有数据训练:在大模型的基础上,使用企业的私有数据进行微调(Fine-tuning),使其能够处理特定领域的私有数据。
- 数据隔离:在模型中设置数据隔离机制,确保私有数据的安全和隐私。
- 定制化模型:为企业定制专门的模型,专门处理其私有数据和特定需求。
- 解决方案:
-
3. 上下文(Token)限制:由于上下文(Token)的限制,无法处理长文本。
- 分段处理:将长文本分割成多个短文本段,分别处理后再进行整合。
- 上下文扩展:通过技术手段扩展模型的上下文长度,使其能够处理更长的文本。
- 层次化模型:使用层次化的模型结构,先处理高层级的摘要信息,再逐步细化到具体细节。
- 解决方案:
🤖
解决上述大模型存在的问题,必须要搭配一套完备的系统方案,而AI Agent的方案就是为此而设计。
AI Agent 技术原理
重点,AI Agent核心原理公式
AI Agent = LLM(大模型)+ Planning(规划)+ Memory(记忆)+ Tools(工具)
下面两张图,是学习智能体必须要理解的概念图。进一步认识智能体以及它的能力的边界。
- LLM(大模型+提示词):这是AI代理的核心部分,类似于人类大脑的核心。它负责理解和处理输入的信息。
- Planning(规划):这部分涉及如何组织和执行任务的流程。例如,先搜索信息,再写大纲,然后与人讨论等,这个过程通常被称为工作流。
- Memory(记忆):类似于我们写书时使用的笔记本或电脑,它允许AI代理随时回顾已经处理过的信息。
- Tools(工具):指的是AI代理可以使用的工具,比如谷歌浏览器,以便获取最新的信息。
智能体(AI Agent)是人工智能领域的一个重要概念,指的是能够自主感知环境、做出决策并执行行动的系统。
🤖
AI+Agent 是利用了AI 大模型能力的 Agent,而这个Agent又可以是多样的存在,用来帮助完成一些大模型无法触达的动作和实现大模型不具备的能力,例如它可以具备存储记忆、工具调用、行动规划等能力。
这样 大模型有了手脚,才能做更多的事情。
聊一聊Manus
前段时间Manus的爆火,AI Agent的这个概念又引发了热议,也少不了拿manus和Coze这类智能体开发平台进行对比,同为智能体产品,其二者的设计理念,解决问题的模式却不相同,manus更偏向自主规划与执行,而Coze则需要人为参设定执行路径。在未来随着大模型的继续进化,会继续催生新的范式,人参与的任务比例也将会变少。
AI Agent未来如何?漫谈
随着AI能力的进步,AI Agent的范式也会不断发生变化,正如上面看到的manus的出现,就是一个新的智能体范式。
作为AI的受益者,我们应该积极的看待这些技术的变化,无论AI Agent的形态如何,不管是Coze还是Manus,还是其它,一定要成为第一个学习和掌握并应用它的人,才能享受其第一波的红利机会。
Coze智能体平台
当你了解什么是AI Agent之后,对照Coze平台的能力,也会对其有一个初步的认识,Coze就是承担AI Agent 搭建开发的一套应用平台
Coze作为智能体开发平台,提供了便捷的、无代码/低代码的开发方式,可快速构建开发出一个智能体应用,极大的缩短了我们搭建智能体的路径。
同类的产品也有很多,比如开源的Dify、FastGpt,闭源的有百度的AppBuilder、腾讯的元器、阿里的百宝箱等。
掌握的Coze之后,其实可做到一通百通。目前主流智能体平台搭建的核心技术思路是相通的。
AI Agent 核心概念
AI Agent = LLM(大模型)+ Planning(规划)+ Memory(记忆)+ Tools(工具)
Coze作为智能体开发平台,其设计范式也是遵循上述公式。
当然,并不是智能体就必须包含上述全部。
可以理解,结合AI,用来解决你特定问题的Agent,都可以被定义为智能体
例如:
写作助理,其只需具备基础的大模型能力+提示词,即可满足你日常的使用需要,类似ChatGPT、Kimi这类问答助手。
智能搜索,类似秘塔搜索这种应用,其是一个搜索的智能体。
豆包的文生图,其是一个绘画生图的智能体。
我们搭建智能体的时候需要了解的一些原则
- 清晰的需求场景
- 了解智能体能力的边界
在以上两个前提下,再思考技术的应用,才能搭建出适合实际业务需求的智能体。
智能体开发不是一蹴而就,从0-1,也是不断迭代完成。
需要掌握的Coze核心概念
可通过官方的手册和案例模板,结合我们上面提到的AI Agent的原理,再理解下面的概念。
Coze智能体学习路径
许多小伙伴来咨询如何学习Coze智能体,如何快速入门。
这里可以分两类:
- 纯小白,不了解AI,不懂代码
- 有点基础,用过AI的工具(会写基础的提示词)、懂点代码(能看懂,写过)
对于纯小白,学习路径应该不是直接从Coze开始,而是先了解AI的基础概念,补齐概念的认知差。每天使用AI工具,了解AI的能力边界。同时需要学习一点编程知识(Python+AI编程)。然后再逐步开始学习Coze。
对有基础的小伙伴,最快的提升方式是,不断复刻案例,边做边学。最后能够达到自己搭建智能体用来解决实际业务需求问题。再就是直接实战,挑战难度案例,完成进阶。
我们在Coze中使用到Python的地方主要是代码节点和插件节点。
同时,在工作流的搭建过程也需要有代码的逻辑思维能力,其中的判断节点、循环节点、批处理节点、聚合节点等等,也都是代码的抽象存在。
因为Coze中使用Python主要用来做数据处理(类似我们数学中加减法的存在)。有一定的数据基础、数据结构基础,会很容易理解。所以基础部分学习到第18节即可。
同样,如果需要开发基础的插件,这些知识点也基本够用了。
以上就是这次分享的主要内容,你学废了吗?
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓