读懂 GraphRAG:提升LLM企业落地能力,智能问答革命

在企业中单纯的使用LLM并不会产生太好的效果,因为它们不会对有关组织活动的特定领域专有知识进行编码,而这些知识实际上会给信息对话界面带来价值萃取。很多企业尝试通过RAG来优化这个过程,并且越来越多的人在RAG的方向上不断的研究,今天我们来讨论一下GraphRAG,这种结合知识图谱、图数据库作为大模型结合私有知识系统的最新技术,解析它是如何 释放RAG 的潜力,增强LLM回答复杂问题的准确性和相关性。

什么是RAG?

RAG 是一种自然语言查询方法,用于通过外部知识增强现有的LLM,因此如果问题需要特定知识,问题的答案会更相关。它包括一个检索信息组件,用于从外部源获取附加信息,也称为“基础上下文”,然后将其馈送到 LLM 提示以更准确地回答所需的问题。

这种方法是最便宜和最标准的方法,可以通过额外的知识来增强 LLM 以回答问题。此外,它被证明可以减少 LLM 产生幻觉的倾向,因为这一代人更坚持来自上下文的信息,而这些信息通常是可靠的。由于该方法的这种性质,RAG 成为增强生成模型输出的最流行的方法。

除了问答之外,RAG 还可以用于许多自然语言处理任务,例如从文本中提取信息、推荐、情感分析和摘要等。

但RAG在解决问题的时候,也会有表现非常差的情况:

  • 基本 RAG 很难将关键点联系起来。当回答问题需要通过共享属性遍历不同的信息以提供新的综合见解时,就会发生这种情况。
  • 要求基本 RAG 全面理解大型数据集合甚至单个大型文档的概括语义概念时,基础 RAG 表现不佳。

Graph RAG

GraphRAG是一种结合了知识图谱和大型语言模型(LLM)的技术,旨在提高问答系统的能力。微软研究人员宣布了GraphRAG,这是一种新方法,通过AI生成的知识图谱来增强AI驱动的问答系统。GraphRAG技术要求大型语言模型根据私有数据集创建知识图谱,从而改善问答过程。

GraphRAG利用图神经网络(GNN)的结果中的图嵌入来增强文本嵌入,以提高用户查询响应推理的能力。这种方法被称为软提示(Soft-prompting),是一种提示技术。此外,GraphRAG还被用于训练LLMs在不直接提供数据的情况下,通过图基数据表示进行学习,这使得模型能够访问大量的结构化知识。

如何执行 RAG?

要实现用于问答的 Graph RAG,您需要选择可以将哪些信息发送给 LLM。这通常是通过根据用户问题的意图查询数据库来完成的。为此目的最合适的数据库是向量数据库,它通过嵌入捕获连续向量空间中的潜在语义、句法结构和项目之间的关系。丰富的提示包含用户问题以及预先选择的附加信息,因此生成的答案会将其考虑在内。

一个简单的 Graph RAG 可以如下去简单实现:

  1. 使用 LLM(或其他)模型从问题中提取关键实体
  2. 根据这些实体检索子图,深入到一定的深度
  3. 利用获得的上下文利用 LLM 产生答案。

例如 LlamaIndex 这样的 LLM 编排工具,开发者可以专注于 LLM 的编排逻辑和 pipeline 设计,而不用亲自处理很多细节的抽象与实现。

所以,用 LlamaIndex,我们可以轻松搭建 Graph RAG,甚至整合更复杂的 RAG 逻辑,比如 Graph + Vector RAG。

尽管基本实施很简单,但您需要考虑一系列挑战和注意事项,以确保结果的良好质量:

  • 数据质量和相关性对于 Graph RAG 的有效性至关重要,因此应该考虑如何获取最相关的内容来发送 LLM 以及发送多少内容等问题。
  • 处理动态知识通常很困难,因为需要不断用新数据更新向量索引。根据数据的大小,这可能会带来进一步的挑战,例如系统的效率和可扩展性。
  • 生成结果的透明度对于使系统值得信赖和可用非常重要。有一些快速工程技术可以用来刺激LLM解释答案中包含的信息的来源。

Graph RAG 的不同种类

Graph RAG 是对流行的 RAG 方法的增强。 Graph RAG 包括一个图形数据库,作为发送到 LLM 的上下文信息的来源。向LLM提供从较大尺寸文档中提取的文本块可能会缺乏必要的上下文、事实正确性和语言准确性,而LLM无法深入理解收到的文本块。与向 LLM 发送纯文本文档块不同,Graph RAG 还可以向 LLM 提供结构化实体信息,将实体文本描述与其许多属性和关系相结合,从而鼓励 LLM 产生更深入的见解。借助 Graph RAG,矢量数据库中的每条记录都可以具有丰富的上下文表示,从而提高特定术语的可理解性,因此 LLM 可以更好地理解特定主题领域。Graph RAG 可以与标准 RAG 方法结合起来,以获得两全其美的效果——图表示的结构和准确性与大量文本内容相结合。

我们可以根据问题的性质、现有知识图中的领域和信息总结Graph RAG 的几种变体:

  • 图形作为内容存储:提取相关的文档块并要求 LLM 使用它们来回答。这种多样性需要一个包含相关文本内容和元数据的知识图谱,并与矢量数据库集成。
  • 作为主题专家的图表实体链:提取与自然语言(NL)问题相关的概念和实体的描述,并将其作为附加的“语义上下文”传递给LLM。理想情况下,描述应包括概念之间的关系。这种多样性需要具有全面概念模型的知识图谱,包括相关本体、分类法或其他实体描述。实现需要或其他机制来识别与问题相关的概念。
  • 图形作为数据库:将 NL 问题(部分)映射到图形查询,执行查询并要求 LLM 总结结果。这种多样性需要一个包含相关事实信息的图表。这种模式的实现需要某种 NL 到图查询工具和实体链接。

总结

GraphRAG(Graph Retrieval-Augmented Generation)是一种结合了图数据库和检索增强生成技术的先进方法,它在多种应用场景中展现出了其独特的价值和潜力。通过结合图数据库的强大表示能力和大语言模型的理解能力,随着技术的进一步发展,GraphRAG的应用场景将会更加广泛和深入

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LLM是一家知名企业,为各行各业提供全方位的企业应用解决方案。下面将通过一个实际案例来说明LLM企业应用方面的成功经验。 某电子制造企业合作了LLM,希望提高生产效率和产品质量。LLM的团队首先进行了全面的企业调研,了解其业务流程和存在的问题。随后,他们根据调研结果设计了一套定制化的企业应用系统。 该企业应用系统包含了以下几个核心模块:生产计划管理、设备维护管理、原材料采购与库存管理、质量检测与追溯、销售订单管理以及绩效评估。每个模块都有相应的功能和流程,能够满足企业的具体需求。 通过该企业应用系统,该电子制造企业实现了很多突破。首先,生产计划管理模块能够根据订单情况自动生成生产计划,有效降低了生产周期和提高了生产效率。设备维护管理模块则帮助企业实现了设备的智能化管理,及时进行维护和保养,减少了停机时间和维修成本。 原材料采购与库存管理模块通过与供应商进行信息对接,实现了快速采购和准确控制库存,避免了原材料不足和过多的情况。质量检测与追溯模块在生产过程中进行多次质量检测,确保产品质量达标,并实现了产品追溯,便于问题溯源和召回。销售订单管理模块则提供了一个便捷的订单管理系统,实现了订单的及时处理和跟踪。绩效评估模块通过对各个部门和员工的工作数据进行分析,帮助企业进行绩效评估和个人提升。 通过LLM企业应用系统,该电子制造企业的生产效率得到了大幅提升,产品质量得到了有效控制。同时,该系统增加了企业的信息化管理,提高了企业的竞争力和市场份额。 这个案例充分展示了LLM企业应用方面的成功经验,通过对企业的深入了解和全面的系统设计,能够为企业提供量身定制的解决方案,帮助其实现高效运营和持续发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值