LangChain-Chatchat (原 Langchain-ChatGLM)(代码分享)
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
部署还是比较简单的,照着文档一步一步来就行
先看下 python 版本,最好 3.10:https://www.python.org/download/releases/
python --version
然后拉取仓库,安装依赖
# 拉取仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
cd Langchain-Chatchat
# 安装全部依赖
pip install -r requirements.txt
我 webui 和 api 都安装,可以按需安装的
#安装API
pip install -r requirements_api.txt
#安装webui
pip install -r requirements_webui.txt
下面需要下载模型,受限需要装下 Git LFS:https://docs.github.com/zh/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
模型一般从 HuggingFace 下载: https://huggingface.co/models
不过由于某些原因可能无法访问,我们可以从镜像站点下载:https://hf-mirror.com/models
下载模型:
git clone https://hf-mirror.com/THUDM/chatglm2-6b
git clone https://hf-mirror.com/moka-ai/m3e-base
下面复制下默认的配置文件
python copy_config_example.py
初始化知识库
python init_database.py --recreate-vs
然后启动
python startup.py -a
顺利的话可以看到当前配置:
浏览器打开web界面:
API也顺利运行:
仍本水浒传进去,看看效果:
貌似还行,主要是 cpu 的话实在太慢…
看下我们的 pytorch 是否支持使用 GPU
python
import torch
torch.version
print(torch.cuda.is_available())
False 说明当前 pytorch 不支持 cuda
要用 gpu,需要装 cuda,然后装支持 cuda 的 pytorch
先下载 cuda toolkit :https://developer.nvidia.com/cuda-toolkit-archive
目前 pytorch 用的比较多的是 11.8 和 12.1
安装完成后,运行查看下 cuda 版本
nvcc –V
然后上 https://pytorch.org/ ,安装支持 cuda 的 pytorch
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
但我们已经装过 pytorch 的话,这样不一定能装上…
需要上 https://download.pytorch.org/whl/torch_stable.html
找到需要的版本,本地安装,
像CPU版本的,支持 python3.10 的,win版的是这个:
支持 cuda 12.1,python3.10 的,win版的是这个:
下载到本地,安装:
pip install g:/AI/torch-2.1.0+cu121-cp310-cp310-win_amd64.whl
安装完成后再看下是否支持 cuda:
python
import torch
torch.version
print(torch.cuda.is_available())
现在再启动 Langchain-Chatchat,就可以支持 GPU 了
但是我的 8G 显存太小了,使用 chatglm2-6b 的时候会报显存不足无法启动….
可以使用量化过的 chatglm2-6b-int4 模型(当然量化过的模型会傻一点…)
先下载模型:
然后修改 model_config.py,修改 LLM 模型名称(注意上面 MODEL_PATH 的 llm_model 里指定了 chatglm2-6b-int4 模型的路径,需要的话可以自己修改模型路径)
然后运行
python startup.py -a
可以看到我们已经是 cuda 的版本了
随便试试…
速度比 cpu 快了很多…
原来 智多星 是 李逵…
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓