要不是那个 GitHub 44k star 的热门项目在网上疯传,我可能一辈子都记不住这个名字要怎么拼:Sebastian Raschka。
虽然总是拼错他的名字,但他却在大模型的混沌中,一次次救了我。搜索一下,发现这哥们还挺“反差萌”,不拍炫技视频、不走网红路线,安安静静地搞教程。
但你别说,他出的教程,是真的火,从机器学习、深度学习,到如今的大模型,他几乎每一步都走在最前面。
就连 Designing Machine Learning Systems 的作者 Chip Huyen 都曾转发他的项目说“这是学习大模型底层原理的绝佳资源”。
国内专家张俊林、苏剑林、Netflix 工程师也都纷纷点赞力推。
最妙的是,他的教程不仅靠谱、清晰、能跑通,重点是——你能看懂!
就连 Hugging Face 上让人头大的文档,他都能顺顺溜溜地讲明白,还能带你一步步手搓大模型。
十几年前,Sebastian Raschka 还是个学生,在一个统计模式分类课程上,他完成了首个独立项目:一个能通过歌词识别歌曲所蕴含情绪的模型,以及相应的网页应用程序。别人草草交个作业了事,他不仅建了模型,还能跑起来。
就是这事儿,一下子点燃了他对 AI 的热情。
之后几年,他打怪升级,一路自学、深挖、分享,从机器学习写到神经网络,从 YouTube 视频分享到 GitHub 开源项目,每一步都稳扎稳打。
而现在,他把这条「自学→实战→输出」的路,浓缩成一本书——《从零构建大模型》,来帮助更多想学习大模型的人。
这本书不是“AI 概念小册子”,更没有虚的东西,是你真正能用上的实打实的方法。
Sebastian 的风格一向都很直接:“我不是大神,我只是一个把复杂问题讲清楚的人。”
所以别怕自己基础薄弱,起点低,跟不上——他写书不是为了给大佬拍手看的,是写给你我这样的普通开发者的!
这本不是会“告诉你这事多牛逼”的那种书,它是“你来,我教你上手”的那种书。看过的人几乎都一致好评,高赞作者!
书中的内容很接地气,作者手把手带你亲手构建、训练、微调一个属于自己的大模型。从数据准备到预训练,从指令微调到模型部署,每一步都讲得清清楚楚。
读完这本书,你会学到什么:
🔹从零开始:自己动手构建模型架构!
🔹 模型训练:教你如何准备数据、搭建训练管道,并优化模型效果!
🔹 让 LLM 更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!
🔹 人类反馈微调(RLHF):让 LLM 学会理解指令,避免胡言乱语!
🔹 轻量级开发:一台普通笔记本就能跑,告别「算力焦虑」!
作者让你用最小的算力跑通最大的逻辑,你只要拥有一台笔记本,具备一定的 Python 基础,那你都可以来试试!作者让 LLM 不再高高在上,而是真正进入了普通开发者的工具箱里。附上中文版思维导图:
如果你在操作中遇到困难,作者还亲自录了 YouTube 教学视频(真·手把手讲代码),这样你也无需担心学不会了!真的是很贴心。
作者教学视频地址:
https://space.bilibili.com/3546869640726821
而且,中文版还增加了 DeepSeek 方面的内容,这可使原版里没有的干货哟!独一无二,主要讲解了如何优化推理策略和部署,实用性拉满!
可以说学习大模型这一路并不轻松,但好在有人走在前面,把路写成了文档。
如果你正准备入门大模型开发,就来翻翻这本书吧!一定不会让你失望。
作译者是谁?
作者塞巴斯蒂安·拉施卡(Sebastian Raschka),极具影响力的人工智能专家,GitHub 项目 LLMs-from-scratch 的 star 数达 44k。
现在大模型独角兽公司 Lightning AI 任资深研究工程师。博士毕业于密歇根州立大学,2018~2023 年威斯康星大学麦迪逊分校助理教授(终身教职),从事深度学习科研和教学。
除本书外,他还写作了畅销书《大模型技术30讲》
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓