这本大模型书为啥全网都在追?我看了3页就明白了!

要不是那个 GitHub 44k star 的热门项目在网上疯传,我可能一辈子都记不住这个名字要怎么拼:Sebastian Raschka。

图片

虽然总是拼错他的名字,但他却在大模型的混沌中,一次次救了我。搜索一下,发现这哥们还挺“反差萌”,不拍炫技视频、不走网红路线,安安静静地搞教程。

但你别说,他出的教程,是真的火,从机器学习、深度学习,到如今的大模型,他几乎每一步都走在最前面。

就连 Designing Machine Learning Systems 的作者 Chip Huyen 都曾转发他的项目说“这是学习大模型底层原理的绝佳资源”。

国内专家张俊林、苏剑林、Netflix 工程师也都纷纷点赞力推。

最妙的是,他的教程不仅靠谱、清晰、能跑通,重点是——你能看懂!

就连 Hugging Face 上让人头大的文档,他都能顺顺溜溜地讲明白,还能带你一步步手搓大模型。

十几年前,Sebastian Raschka 还是个学生,在一个统计模式分类课程上,他完成了首个独立项目:一个能通过歌词识别歌曲所蕴含情绪的模型,以及相应的网页应用程序。别人草草交个作业了事,他不仅建了模型,还能跑起来。

就是这事儿,一下子点燃了他对 AI 的热情。

之后几年,他打怪升级,一路自学、深挖、分享,从机器学习写到神经网络,从 YouTube 视频分享到 GitHub 开源项目,每一步都稳扎稳打。

而现在,他把这条「自学→实战→输出」的路,浓缩成一本书——《从零构建大模型》,来帮助更多想学习大模型的人。

这本书不是“AI 概念小册子”,更没有虚的东西,是你真正能用上的实打实的方法。

Sebastian 的风格一向都很直接:“我不是大神,我只是一个把复杂问题讲清楚的人。”

所以别怕自己基础薄弱,起点低,跟不上——他写书不是为了给大佬拍手看的,是写给你我这样的普通开发者的

图片

这本不是会“告诉你这事多牛逼”的那种书,它是“你来,我教你上手”的那种书。看过的人几乎都一致好评,高赞作者!

图片

图片

图片

书中的内容很接地气,作者手把手带你亲手构建训练微调一个属于自己的大模型。从数据准备到预训练,从指令微调到模型部署,每一步都讲得清清楚楚。

读完这本书,你会学到什么:

🔹从零开始:自己动手构建模型架构!

🔹 模型训练:教你如何准备数据、搭建训练管道,并优化模型效果!

🔹 让 LLM 更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!

🔹 人类反馈微调(RLHF):让 LLM 学会理解指令,避免胡言乱语!

🔹 轻量级开发:一台普通笔记本就能跑,告别「算力焦虑」!

作者让你用最小的算力跑通最大的逻辑,你只要拥有一台笔记本,具备一定的 Python 基础,那你都可以来试试!作者让 LLM 不再高高在上,而是真正进入了普通开发者的工具箱里。附上中文版思维导图:

图片

如果你在操作中遇到困难,作者还亲自录了 YouTube 教学视频(真·手把手讲代码),这样你也无需担心学不会了!真的是很贴心。

作者教学视频地址:

https://space.bilibili.com/3546869640726821

而且,中文版还增加了 DeepSeek 方面的内容,这可使原版里没有的干货哟!独一无二,主要讲解了如何优化推理策略和部署,实用性拉满!

可以说学习大模型这一路并不轻松,但好在有人走在前面,把路写成了文档。

如果你正准备入门大模型开发,就来翻翻这本书吧!一定不会让你失望。


作译者是谁?

作者塞巴斯蒂安·拉施卡(Sebastian Raschka),极具影响力的人工智能专家,GitHub 项目 LLMs-from-scratch 的 star 数达 44k。

现在大模型独角兽公司 Lightning AI 任资深研究工程师。博士毕业于密歇根州立大学,2018~2023 年威斯康星大学麦迪逊分校助理教授(终身教职),从事深度学习科研和教学。

除本书外,他还写作了畅销书《大模型技术30讲》

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值