为什么要搭建一个RAG应用?许多同学会有这个疑问,先了解一下什么是RAG?RAG是一种结合检索和生成的技术方法,把传统基于检索的问答系统与基于自然语言生成的技术融合起来,提升AI大模型回答自然语言问题时的准确性与可靠性。
使用RAG应用时,会先从大量外部知识库或企业私有文档里检索相关信息,再结合模型生成更精准、贴合上下文的答案 ,用检索 - 生成机制,提高生成模型表现,有效解决大模型生成回答时出现幻觉、缺乏专业知识、回答缺乏可解释性等问题。
下面我将详细介绍如何使用扣子搭建一个关于数据分析知识的智能体,这样可以基于我们学习到的数据分析知识来精准回答数据分析问题,在泛知识的时代,这种学习方式更利于我们学习和掌握数据分析知识,先登录扣子平台,在页面左上角单击⊕创建智能体。
选择创建智能体。
然后单击AI创建智能体,输入下面的提示词:
你是我的文档问答助手,根据文档内容回答相关问题,如果在文档中找到了,就用文档中的内容回答并给出原文引用和回答,如果没找到相关的内容,就使用 bingWebSearch 插件”搜索相关信息。
即可一键创建一个文档精灵的智能体。
如果你对于人设与回复逻辑不满意,可以点击自动优化提示词来修改。
接着在编排页面的技能区域,点击添加插件。
搜索 bingWebSearch插件,然后点击添加。
如下,将bingWebSearch插件添加进来。
接下来添加知识库,点击文本右边的加号,添加知识库。
然后点创建知识库。
在创建知识库时,我们选择导入本地文档中的文本格式的内容,当然,扣子也支持添加在线网页、飞书文档、公众号内容等,输入名称和描述,可以根据文档内容自定义命名,点击创建并导入。
然后把本地的文档拖进去,这里我选择一些本地的Python数据科学速查表PDF文档,点击下一步。
然后选精准解析、自动分段与清洗、平台共享存储,点击下一步。
内容解析以后,可以分段预览,然后点击下一步。
数据处理完成以后,继续点下一步。
最后将解析好的内容添加到智能体。
在对话体验中进行调试。
设置开场白文案:
嗨,我随时准备为你答疑解惑。我擅长从各种信息源中找寻答案,快来交流吧。
开场白预置问题:
什么是pandas?
pandas导入数据都有哪几种方式?
Python绘图都有哪些包?
点击预置问题,该智能体很快基于文档里的内容做了回答,当然,你也可以问点其他问题,问题内容如果超出知识库范围,那么智能体会自动使用bingWebSearch插件来搜索回答。
测试没有问题,就可以点击发布,扣子智能体支持多个平台,可以按照使用需求去设置。
扣子搭建的RAG应用,在日常学习和职场办公中有多种应用场景,极大提升泛知识的检索效率与应用价值,无论是数据分析初学者,还是专业的数据分析师,都能借助这一应用迅速获取精准信息。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓