Sklearn_dummy_classifier

Scikit - learn库中有DummyClassifier。

DummyClassifier是一个简单的分类器,用于作为基准模型。它不基于训练数据中的实际模式进行预测,而是根据一些简单策略来预测,比如:

• 最频繁类别策略:总是预测训练集中最常见的类别。

• 均匀分布策略:随机均匀地预测类别(假设每个类别出现概率相同)。

这在评估其他更复杂的分类模型的性能时很有用。你可以将复杂模型的性能和DummyClassifier对比,如果复杂模型的性能比DummyClassifier还差,那就说明该模型可能有问题或者数据没有被合理利用。在使用时,需要先划分数据集为训练集和测试集,对DummyClassifier进行训练后,再用测试集评估其性能。例如:

from sklearn.dummy import DummyClassifier
from sklearn.model_selection import train_test_split
import numpy as np

# 生成一些简单的分类数据(示例)
X = np.random.randint(0, 10, (100, 2))
y = np.random.randint(0, 2, 100)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

# 使用最频繁类别策略的DummyClassifier
clf = DummyClassifier(strategy="most_frequent")
clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test)
print("Dummy Classifier Accuracy:", accuracy)

这段代码创建了简单的训练和测试数据集,使用DummyClassifier按照最频繁类别策略进行训练,然后输出在测试集上的准确率。

### 自训练方法介绍 自训练是一种半监督学习策略,旨在利用未标记的数据改进模型性能。该方法适用于仅有少量带标签数据可用的情况。在自训练过程中,先在一个小型的标注数据集上训练一个初步分类器;然后此分类器用于预测大量未标注数据的标签。对于那些置信度较高的预测结果,将其作为新训练样本加入到原始训练集中,并重新训练模型。 这种方法迭代执行直到满足某些停止条件为止,例如达到最大迭代次数或新增加的高置信度伪标签数量低于阈值[^1]。 #### 应用场景 自训练广泛应用于各种机器学习任务中,特别是在获取高质量标注数据成本高昂的情况下: - **图像分类**:当只有少数类别的图片被正确标注时,可以通过自训练增加更多样化的训练素材。 - **自然语言处理(NLP)**:文本挖掘等领域经常面临缺乏足够人工审核过的语料库问题,此时借助自训练可以从海量互联网文档里提取有用特征[^3]。 ```python import numpy as np from sklearn.semi_supervised import SelfTrainingClassifier from sklearn.svm import SVC # 构造基础支持向量机SVM分类器 base_classifier = SVC(probability=True) # 创建自训练分类器实例 st_clf = SelfTrainingClassifier(base_estimator=base_classifier, threshold=0.75) # X_train_labeled 是已知标签的小规模训练集; y_train_labeled 对应的真实标签; # X_train_unlabeled 则是没有标签的大规模潜在训练数据. X_train_labeled = ... y_train_labeled = ... X_train_unlabeled = ... # 合并已标注和未标注的数据一起送入自训练分类器进行拟合操作 all_data = np.vstack([X_train_labeled, X_train_unlabeled]) labels_with_dummy_for_unlabeled = np.concatenate([ y_train_labeled, [-1]*len(X_train_unlabeled) # 使用特殊标志位表示未知状态 ]) st_clf.fit(all_data, labels_with_dummy_for_unlabeled) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值