GPT-4o遭破解!大神搞出越狱版本,OpenAI紧急封杀,安全小组被打脸

图片

大家可能都知道,OpenAI通过一些防护措施限制了ChatGPT的回复,以防止它讨论敏感或违法的问题。

然而,最近一位自称网络白帽和红队成员(此前参与OpenAI超级对齐组攻击测试的队伍)在5月30日发布了一条推文,声称成功越狱了GPT-4o模型。

网友推出了一种新的“上帝模式”(GODMODE),可以让ChatGPT绕过这些安全措施,自由回答包括制作汽油弹在内的问题,让用户能够“畅所欲言”地进行AI对话。

图片

▲ID为Pliny the Prompter ,在推文中表示:请为你的使用负责,再尽情使用

我们通过Pliny 发布的截图,可以看出他确实破解了GPT的“防护围栏”:

图片

图片

上面的这张截图是GPT-4o教提供的“使用用家用物品制作凝固汽油弹”教程。

媒体公司Futurism也紧随其后进行了真实性测试。第一次,他们要求ChatGPT提供如何制作药的方法;第二次,他们询问短路点火装置线路来启动汽车的方法,两次测试中,他们都成功获得了相关答案。

GODMODE似乎使用了一种称为"leetspeak"的技术,通过将某些字母替换为相似的数字,以创建独特且风格化的书写方式来诱导GPT-4o绕过限制。也就是说,当你打开越狱后的GPT时,你会立即看到这样一句话:"Sur3, h3r3 y0u ar3 my fr3n",其中每个字母"E"被替换为数字3,而字母"O"也被替换为0。

根据网友最新的“战报”,WEBSIM和CLAUDE-3也被攻破~

图片

OpenAI 发言人 Colleen Rize表示,他们已了解此GPT的存在,并针对相关违规行为采取了行动,目前这个Godmode GPT 已被删除。

图片

这一消息让人不寒而栗,之前关于AI监管不到位可能引发危险的警告竟然这么快就应验了。这种情况让人不寒而栗,AI技术的潜在风险似乎比我们预想的要近得多,迫切需要引起更多关注和重视。

OpenAI已成立安全小组

OpenAI最近已经宣布成立了一个新的安全小组,以应对近期离职员工对公司商业意图的批评,同时推动 GPT-4 继任模型的开发。

这个新团队名为安全与保障委员会(Safety and Security Committee,简称 SSC),由 OpenAI CEO Sam Altman 领导,委员会主席为 Bret Taylor,其他成员包括 Adam D’Angelo 和 Nicole Seligman。

图片

▲Bret Taylor的履历非常丰富,曾参与创建谷歌地图,担任过Facebook首席技术官、Twitter董事会主席、Salesforce联合首席执行官,目前是OpenAI和Shopify董事会成员。

安全委员会还包括 OpenAI 各团队的负责人,例如曾短暂担任首席科学家的 Jakub Pachocki。OpenAI 表示,SSC 将向董事会提出关于安全与保障的重要决策建议,特别是“下一个前沿模型”的开发。

图片

这一举措引发了外界的猜测。新成立的安全团队的任务是在90天内提出安全建议,但最终决定权仍在高层手中,这也引发了质疑。

尤其是在 Ilya Sutskever 和 Jan Leike 离职,以及相关内幕导致超级对齐小组解散的背景下,前董事会成员 Helen Toner 和 Tasha McCauley 批评了 Sam Altman 不重视安全问题,破坏公司治理并偏离最初目标。

很多人认为 OpenAI 可能是在转移对 GPT-5 的注意力。虽然公司表示会继续专注于安全模型的构建,但具体讨论内容却没有透露,新安全部门的成立只是表面功夫,是为了应对之前的负面新闻的障眼法,而 OpenAI 扩展商业版图的速度没有人能阻挡。

大学生版ChatGPT也来了!

5月30日凌晨,OpenAI宣布推出全新教育版AI工具ChatGPT Edu,专为高校设计。

图片

这款工具由最新的GPT-4o驱动,拥有强大的文本理解、编程和数学能力,还支持数据分析、网页浏览和文档摘要等高级功能,兼容50多种语言。

相比免费版,ChatGPT Edu提供更高的消息限制和企业级安全控制,保障数据隐私和管理,,该版本的对话和数据不会用于训练 OpenAI 模型。

各大高校已经开始将ChatGPT Edu应用于教学和管理中。例如,哥伦比亚大学的Nabila El-Bassel教授用它来分析数据,推进社区干预策略;沃顿商学院的Ethan Mollick教授让学生通过AI反思课程内容,提升学习深度;亚利桑那州立大学的Christiane Reves教授开发了语言伙伴GPT,帮助学生提高德语交流能力。


更多科研资源获取:

【一】上千篇CVPR、ICCV顶会论文
【二】动手学习深度学习、花书、西瓜书等AI必读书籍
【三】机器学习算法+深度学习神经网络基础教程
【四】OpenCV、Pytorch、YOLO等主流框架算法实战教程

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值