AI驱动的流体力学仿真应用

深度学习与流体力学的学科交叉正不断扩展科研的边界。在工业领域,例如航天航空、海洋船舶和能源动力等行业,存在许多亟待解决的流体控制与优化设计难题。流体力学问题的主要特点包括高维度、强非线性和数据量大。近年来,深度学习技术因其数据驱动的特性和处理高维复杂问题的能力,已在流体力学领域取得了一定的应用,而且获了主流期刊比如《Nature》和《Science》杂志的认可。

传统的流体力学模拟方法在应对高耦合度和非线性问题时面临诸多限制,而深度学习技术为流体力学提供了新的思路和方法。这主要集中在:基于流体力学控制方程的辅助求解,流场重构等正问题;控制方程系数等特征量提取等逆问题。通过结构化的神经网络支起完备的解空间,这一技术可以根据外部实验测量数据、物理控制方程、初边界条件等辅助信息寻找问题准确的解函数。同时,不同的神经网络结构提供了更为广阔的灵活性以及功能性,为解决复杂流动问题提供了创新的解决方案,提升了流体动力学仿真的精度与效率,推动了流场优化和控制,以及对复杂流动现象的深入理解。

图片

课程概述

从流体力学基础,流体力学仿真基础以及流体力学&深度学习基础,层层递进,深入浅出,最终从代码层级一站式打通从流体力学理论到问题解决的整个流程。本课程注重学科基础和数值建模框架,不仅提供代码上的实操支持,而且从物理层面给出仿真结果的物理解释,适合初学者进阶。课程结合前沿论文,讲解论文论述框架,瞄准当下热点难点。最后,依托所课程内容,提供该主题下论文结构性和系统性撰写方式。

图片

目标

培养流体力学和深度学习的建模能力

●课程注重学科基础和科学建模方案,涵盖多物理场耦合问题和控制方程构建,以及问题简化的物理依据。结合控制方程,将问题从复杂到简单,最终在CAE训练中感受如何抓住主要矛盾,精简问题结论;

l课程注重深度学习基础理论,培养从0到1的神经网络建模过程,从原理上理解神经网络,从代码上实现神经网络;

●学习深度学习在流体力学中的应用,比较经典解法和深度学习解法。培养精通流体力学与深度学习的复合型人才,为解决流体力学问题提供另一种范式。

理论与实践并重

●从工程师培养的角度,培养简化问题的能力;

●简化软件上手难度,定位软件或代码为服务于问题的工具;

●手把手教学CFD建模,使用如COMSOL Multiphysics,Ansys Fluent,OpenFOAM 等建模软件,并同步展示控制方程,理解操作的底层逻辑。

追踪前沿动态

●分析国际团队最新研究成果,以探索深度学习在流体力学中的发展趋势;

●拓展学员拥有国际视野,加强与国际同行的交流合作;

●积极鼓励学员在流体力学与深度学习间寻找创新交叉点,跟踪前沿研究。

内容

第一天:流体力学复习

张量基础

拉格朗日描述和欧拉描述

基于连续介质力学的运动学描述

雷诺输运方程

欧拉描述下的主守恒方程:质量、动量、角动量守恒

图片

几类简化流体问题举例 (Navi-Stocks方程简化)

●不可压/可压流体问题

●定常流体问题

●无黏流体问题

●二维流体问题

能量守恒定律与热力学基础

●能量守恒定律

●热力学第二定律及自由能

量纲分析简介

图片

第二天:流体力学仿真

案例解析

●流体耦合问题

●热流耦合问题

●物质输运

●离子输运问题

●多孔材料的流固耦合

流体力学计算方法

●有限体积法

●时间差分算法

●有限元法

■对流问题中的稳定性方法举例

第三天:流体力学实操

COMSOL Multiphysics, OpenFOAM, Ansys Fluent流体力学实操

●单相流

●非等热流以及共轭传热

●稀物质输运

●基于相场法的二相流问题

●多孔材料的流固耦合

●流固耦合-动网格法

●离子输运问题

图片

图表 2 速度大小剖面云图以及流线图

图片

图表 3 压力场

图片

图表 4 灯丝热作用下灯泡内气体的运动

第四天

神经网络基础回顾:感知机、多层感知机

神经网络基本结构:激活函数、损失函数、优化算法

神经网络训练技巧:mini-batch,正则化,dropout

结构化神经网络

●卷积神经网络

●循环神经网络

●物理信息神经网络

●傅里叶神经网络

实操:

●神经网络的代码实现 (Matlab, Python)

●训练技巧演示 (Matlab)

●参数更新算法演示 (Matlab)

图片

●图表 5 神经网络结构示意图

图片

●图表 6 物理信息神经网络处理NS方程

图片

图表 7 神经网络训练早停技巧

第五天

流体力学&深度学习实战:

●CNN在流场预测中的应用 (Python实操)

●CNN提取流场出流速、压力、涡旋等特征 (Python实操)

●LSTM 模型在流场时间序列预测中的应用 (Python实操)

●U-Net结构应用于流场预测、重构、优化 (Python实操)

图片

图表 8 有限差分方法和PINN方法对热场分布预测效果对比

图片

图表 9 傅里叶神经网络算子

图片

●图表 10  U-Net 卷积神经网络架构

●PINN实操 (Python):

■PINN预测常微分方程的响应

■2D热传导

■Burger方程

■圆柱绕流问题

■使用PINN模型求解稳态和非稳态流动问题

●iPINN实操案例:

■数据驱动的iPINN常微分方程逆问题求解

■数据驱动的iPINN偏微分方程逆向问题求解

●论文导读

nLino M, Fotiadis S, Bharath A A, et al. Current and emerging deep-learning methods for the simulation of fluid dynamics[J]. Proceedings of the Royal Society A, 2023, 479(2275): 20230058.

nPeng W, Qin S, Yang S, et al. Fourier neural operator for real-time simulation of 3D dynamic urban microclimate[J]. Building and Environment, 2024, 248: 111063.

图片

●图表 11 2D圆柱绕流中重构流场和精确解对比

图表 12 Physics-Informed Machine Learning in Fluid Mechanics

时间:

2024.12.28-----2024.12.29  全天(上午9:00-11:30下午13:30-17:00)

2025.1.02-----2025.1.03晚上(晚上19:00-22:00)

2025.1.04-----2025.1.05全天(上午9:00-11:30下午13:30-17:00)

腾讯会议 线上授课(共五天时间 提供全程回放视频)

详情:深度学习流/固体力学与深度学习岩土工程助力您发顶刊!

<think>好的,我现在需要帮助用户了解或实现基于物理信息神经网络(PINN)的热传导问题建模与求解。首先,我需要回忆一下PINN的基本概念,特别是它在热传导中的应用。 用户提到的是热传导问题,所以一维热传导方程是关键。我应该先回顾一下热传导的偏微分方程形式,比如∂T/∂t = α ∂²T/∂x²。然后,考虑如何用神经网络来建模温度分布T(x,t),输入是空间x和时间t,输出是温度T。 接下来,PINN的核心是将物理方程作为损失函数的一部分。这需要计算神经网络的输出对x和t的导数,通常通过自动微分来实现。我需要解释清楚这个过程,可能还要提到损失函数的组成,包括数据损失和方程残差损失。 然后,用户可能需要具体的实现步骤,比如网络结构的设计、损失函数的构建、优化器的选择等。Python代码示例会很有帮助,这里可能需要使用TensorFlow或PyTorch,比如用TensorFlow的Keras接口来搭建网络,然后自定义训练循环,计算损失并反向传播。 还需要考虑边界条件和初始条件如何融入损失函数。比如在边界处的温度是否固定,初始时刻的温度分布是否已知,这些都需要作为额外的损失项。 用户可能对示例代码感兴趣,所以我要确保代码正确,并且有注释说明每一步的作用。同时,要提到可能的挑战,比如高阶导数导致的训练不稳定,或者需要调整权重来平衡不同损失项。 另外,用户的问题可能涉及如何验证模型的有效性,比如与解析解对比,或者可视化温度分布随时间的变化。这些在回答中也需要提到,以提供完整的解决方案。 最后,生成的相关问题需要覆盖PINN的其他应用、热传导中的挑战、与传统方法的比较,以及多物理场耦合的可能性。这样用户可以有进一步探索的方向。 现在需要检查是否有遗漏的步骤,比如数据生成、网络层数的选择,或者训练时的超参数设置。同时,确保引用的文献正确,比如用户提供的引用[1]中关于PINN在流体力学中的应用,可以适当关联到热传导问题。 总结来说,回答的结构应该包括:问题概述、PINN原理、实现步骤、代码示例、注意事项和相关问题。确保使用正确的中文术语,数学公式用$$格式,代码用代码块,并自然添加引用。</think>基于物理信息神经网络(PINNs)的热传导问题建模与求解可分为以下步骤: ### 一、问题定义与方程描述 一维热传导方程: $$ \frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} $$ 其中$T(x,t)$为温度场,$\alpha$为热扩散系数。需要满足初始条件$T(x,0)=f(x)$和边界条件(如固定温度$T(0,t)=g(t)$)[^1] ### 二、PINN实现原理 1. **网络架构**: - 输入层:$[x, t]$坐标 - 隐藏层:4-8层全连接网络(推荐使用tanh激活函数) - 输出层:温度预测值$T_{pred}$ 2. **物理约束构建**: - 通过自动微分计算$\frac{\partial T}{\partial t}$和$\frac{\partial^2 T}{\partial x^2}$ - 构建PDE残差项: $$ \mathcal{L}_{pde} = \left\| \frac{\partial T}{\partial t} - \alpha \frac{\partial^2 T}{\partial x^2} \right\|^2 $$ 3. **复合损失函数**: $$ \mathcal{L} = w_{data}\mathcal{L}_{data} + w_{pde}\mathcal{L}_{pde} + w_{bc}\mathcal{L}_{bc} $$ 其中边界条件损失$\mathcal{L}_{bc}$和初始条件损失$\mathcal{L}_{ic}$需单独计算 ### 三、Python实现示例(TensorFlow) ```python import tensorflow as tf import numpy as np # 定义神经网络 class PINN(tf.keras.Model): def __init__(self): super().__init__() self.dense1 = tf.keras.layers.Dense(20, activation='tanh') self.dense2 = tf.keras.layers.Dense(20, activation='tanh') self.out = tf.keras.layers.Dense(1) def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) return self.out(x) # 定义损失函数 def compute_loss(model, X_collocation, X_bc, T_bc, alpha): # 计算PDE残差 with tf.GradientTape(persistent=True) as tape: tape.watch(X_collocation) T_pred = model(X_collocation) dT_dt = tape.gradient(T_pred, X_collocation)[:, 1:2] dT_dx = tape.gradient(T_pred, X_collocation)[:, 0:1] d2T_dx2 = tape.gradient(dT_dx, X_collocation)[:, 0:1] pde_loss = tf.reduce_mean((dT_dt - alpha*d2T_dx2)**2) # 边界条件损失 bc_pred = model(X_bc) bc_loss = tf.reduce_mean((bc_pred - T_bc)**2) return 0.8*pde_loss + 0.2*bc_loss ``` ### 四、关键注意事项 1. **导数计算优化**: - 使用自动微分时注意计算图的构建效率 - 对二阶导数建议采用分步计算(先计算一阶导数,再计算其梯度) 2. **权重调整策略**: - 初始阶段建议设置$w_{data}:w_{pde}:w_{bc}=1:100:100$ - 可采用自适应权重调整算法 3. **数据增强技巧**: - 在边界区域和初始时刻增加采样点密度 - 采用拉丁超立方采样(LHS)生成训练点 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值