技术原理
1. 数据准备与环境构建
首先,数据从VTK文件中读取并处理,这些文件包含流体速度场数据。通过PyVista库提取速度场信息,并将其存储在NumPy数组中。数据集随后被划分为训练集和测试集,用于模型训练和验证。我们定义了一个强化学习环境FluidEnvironment
,该环境使用流体数据来模拟每个时间步的状态转换。环境的reset
方法重置模拟到初始状态,而step
方法根据动作更新环境状态,返回新的状态、奖励和是否结束等信息。奖励函数基于当前状态和动作之间的均方误差(MSE),负奖励鼓励模型减少误差。
2. DQN模型的设计与训练
DQN(深度Q网络)模型的核心是使用神经网络来逼近Q值函数。Q值函数用于评估在给定状态下采取特定动作的预期回报。模型结构包括三个全连接层(Dense层),前两层使用ReLU激活函数以增加模型的非线性表示能力。第三层输出Q值,它的大小等于动作空间的维度。在训练过程中,使用经验回放技术存储过去的经验(状态、动作、奖励、下一状态、是否终止),并从中随机采样小批量数据进行训练。目标Q值通过贝尔曼方程计算,并使用均方误差(MSE)损失