* 如果您使用的是Linux或Mac OS,可以使用conda进行安装:
```
conda install -c bioconda megahit
```
-
运行MEGAHIT:
- 对于双端数据,使用以下命令:
megahit -1 reads_1.fastq -2 reads_2.fastq -o output_directory
其中:
+ `-1 reads_1.fastq`和`-2 reads_2.fastq`是你的双端测序数据文件。 + `-o output_directory`指定输出目录。
- 对于单端数据,使用以下命令:
megahit -r single_reads.fastq -o output_directory
-
分析结果:
- MEGAHIT会在输出目录下生成一个名为
contigs.fa
的文件,其中包含了组装后的 contigs。
- MEGAHIT会在输出目录下生成一个名为
使用MIRA进行短读长数据的组装:
-
安装MIRA:
- MIRA的安装通常需要下载并解压预编译的二进制文件,然后将其添加到系统路径中。具体步骤请参考MIRA的官方文档。
-
运行MIRA:
- 对于双端数据,创建一个名为
mira_config.txt
的配置文件,内容如下:
PROJECT = your_project_name SAMPLE = your_sample_name SETTING = denovo, small, normal, accurate TECHNOLOGY = illumina INPUT_TYPE = paired LIBRARY_TYPE = standard STRANDNESS = forward READ_GROUP_NAME = your_read_group_name FORWARD_READS = reads_1.fastq REVERSE_READS = reads_2.fastq OUTPUT_DIR = output_directory
然后运行以下命令:
mira --config mira_config.txt
- 对于单端数据,将配置文件中的
INPUT_TYPE
改为single
,并将REVERSE_READS
行删除,然后运行相同的命令。
- 对于双端数据,创建一个名为
-
分析结果:
- MIRA会在输出目录下生成多个文件,包括组装后的 contigs(scaffolds)以及其他一些中间文件和统计信息。
2. 病毒序列检测
初步鉴定
使用Kraken2或者Centrifuge等工具进行宿主去除和病毒序列的初步鉴定。
使用Kraken2进行宿主去除和病毒序列鉴定:
-
数据准备:
- 确保你已经获得了原始的测序数据,通常是FASTQ格式。
- 如果数据是双端测序,需要将两个文件合并为一个(对于某些工具可能不需要)。
-
数据库准备:
- 下载或构建包含宿主和病毒参考序列的Kraken2数据库。这通常包括NCBI或其他来源的完整基因组序列。
- 使用
kraken2-build
工具创建数据库,例如:
kraken2-build --download-taxonomy kraken2-build --download-library viral --use-ftp kraken2-build --build --threads <num_threads> --db <database_name> viral/
-
运行Kraken2:
- 使用以下命令对测序数据进行分类和鉴定:
kraken2 --db <database_name> --report <output_report> --threads <num_threads> --min-confidence 0.5 --classified-out <classified_output> <input_reads>
其中:
+--db <database_name>
指定使用的数据库。
+--report <output_report>
生成分类报告。
+--threads <num_threads>
设置并行线程数。
+--min-confidence 0.5
设置最小分类置信度阈值。
+--classified-out <classified_output>
输出分类结果到指定文件。
+<input_reads>
是你的输入测序数据文件。 -
宿主去除和病毒序列提取:
- 分析Kraken2的输出报告和分类结果,识别出被分类为宿主的reads并从原始数据中去除。
- 提取被分类为病毒的reads,这些就是初步鉴定的病毒序列。
使用Centrifuge进行宿主去除和病毒序列鉴定:
-
数据准备:
- 同样确保你已经获得了原始的测序数据。
-
数据库准备:
- 下载或构建包含宿主和病毒参考序列的Centrifuge数据库。可以使用
centrifuge-build
命令构建数据库:
centrifuge-build --name <database_name> --ref <reference_directory> --seq <sequence_file>
其中
<reference_directory>
包含fasta格式的参考序列文件,<sequence_file>
是一个包含序列名称和分类信息的tsv文件。 - 下载或构建包含宿主和病毒参考序列的Centrifuge数据库。可以使用
-
运行Centrifuge:
- 使用以下命令对测序数据进行分类和鉴定:
centrifuge -x <database_name> -1 <input_reads_1> [-2 <input_reads_2>] -o <output_prefix> --report-file <output_report> --threads <num_threads>
其中:
+-x <database_name>
指定使用的数据库。
+-1 <input_reads_1>
和-2 <input_reads_2>
分别指定单端或双端测序数据文件。
+-o <output_prefix>
指定输出文件的前缀。
+--report-file <output_report>
生成分类报告。
+--threads <num_threads>
设置并行线程数。 -
宿主去除和病毒序列提取:
- 分析Centrifuge的输出报告,识别出被分类为宿主的reads并从原始数据中去除。
- 提取被分类为病毒的reads,这些就是初步鉴定的病毒序列。
病毒预测
使用VirSorter进行嵌段式和整合式病毒的预测。
首先,确保你已经安装了VirSorter和其依赖软件(如Python、BLAST+、Prodigal等)。以下是在Linux环境下使用VirSorter的基本步骤:
-
数据准备:
- 确保你已经获得了微生物基因组的fasta文件。
-
下载和安装VirSorter:
- 从GitHub上克隆VirSorter的代码库:
git clone https://github.com/jiarong/VirSorter.git cd VirSorter
-
配置环境:
- 确保你的环境中已经安装了BLAST+和Prodigal。如果没有,可以按照以下命令安装:
conda install -c bioconda blast prodigal
-
运行VirSorter:
- 使用以下命令运行VirSorter:
python virsorter.py -i <input_genome_file> -o <output_directory> --db <database_directory>
其中:
+-i <input_genome_file>
指定输入的微生物基因组fasta文件。
+-o <output_directory>
指定输出结果的目录。
+--db <database_directory>
指定VirSorter数据库的目录。如果你还没有下载数据库,可以使用以下命令下载并解压:
wget http://huttenhower.sph.harvard.edu/virsorter/db_virsorter.tar.gz tar -xzf db_virsorter.tar.gz
-
分析结果:
- VirSorter会在输出目录下生成多个文件,包括分类结果、注释信息和可视化图谱。
- 分析
virsorter_output/candidate_viral_proteins.faa
和virsorter_output/summary.txt
文件,可以获取到预测的嵌段式和整合式病毒的信息。
以下是使用VirSorter的一个完整示例脚本:
# 下载并安装VirSorter
git clone https://github.com/jiarong/VirSorter.git
cd VirSorter
# 安装依赖软件
conda install -c bioconda blast prodigal
# 下载VirSorter数据库
wget http://huttenhower.sph.harvard.edu/virsorter/db_virsorter.tar.gz
tar -xzf db_virsorter.tar.gz
# 运行VirSorter
python virsorter.py -i input_genome.fasta -o output_directory --db db_virsorter
# 分析结果
less output_directory/virsorter_output/summary.txt
在这个脚本中,你需要将input_genome.fasta
替换为你的微生物基因组fasta文件的路径,将output_directory
替换为你希望保存输出结果的目录。运行这个脚本后,你可以在output_directory/virsorter_output
目录下找到预测的结果。
3. 病毒分类注释
使用BLAST对比NCBI病毒数据库进行分类注释(fasta文件较大的话推荐先prodigal然后使用蛋白序列使用diamond做序列比对diamond大基因序列快速比对工具使用详解-包含超算集群多节点计算使用方法_diamond比对-CSDN博客)。
makeblastdb -in virus_database.fasta -dbtype nucl
blastn -query assembled_contigs.fa -db virus_database.fasta -outfmt 6 -max_target_seqs 1 -num_threads $THREADS -evalue 1e-5 > blast_results.txt
或者使用ViPhOG (Viral Phage Orthologous Groups) 进行更精细的分类。
ViPhOG (Viral Phage Orthologous Groups) 是一个专门用于病毒和噬菌体蛋白质分类的系统。以下是如何使用ViPhOG进行更精细的分类:
-
获取ViPhOG数据库和工具:
- 访问ViPhOG的GitHub页面(https://github.com/bebatut/viphog)并下载最新的ViPhOG数据库和相关的Python脚本。
-
安装依赖库:
- 确保你的系统已经安装了Python和以下依赖库:
- Biopython
- HMMER
- Diamond
- CD-HIT如果尚未安装,你可以使用以下命令进行安装(假设你已经安装了conda环境管理器):
- 确保你的系统已经安装了Python和以下依赖库:
conda install -c bioconda biopython hmmer diamond cd-hit
-
准备蛋白质序列文件:
- 将你需要分类的蛋白质序列整理成一个或多个人工 fasta 文件。
-
运行ViPhOG分类:
- 使用以下命令运行ViPhOG分类脚本:
python viphog.py -i your_protein_sequences.fasta -d ViPhOG_database_directory -o output_directory
其中:
* `-i your_protein_sequences.fasta` 是你的蛋白质序列文件。
* `-d ViPhOG_database_directory` 是ViPhOG数据库的目录。
* `-o output_directory` 是输出结果的目录。
-
分析结果:
- 分类完成后,ViPhOG会在指定的输出目录下生成多个文件,包括比对结果、分类信息等。
- 主要关注
output_directory/viphog_assignments.txt
文件,其中包含了每个蛋白质序列的ViPhOG分类信息。
-
解读分类信息:
- ViPhOG分类信息是以数字编码的形式表示的,每个数字代表一个特定的蛋白质家族或功能类别。
- 你可以通过查阅ViPhOG数据库中的描述文件来解析这些数字编码,了解每个分类的具体含义。
4. 病毒功能注释
使用InterProScan进行蛋白质结构域和功能注释。
-
安装InterProScan:
- 如果你还没有安装InterProScan,可以从其官方网站(https://www.ebi.ac.uk/interpro/download.html)下载并按照提供的说明进行安装。
-
准备蛋白质序列文件:
- 将你需要进行注释的病毒蛋白质序列整理成一个或多个人工fasta文件。
-
运行InterProScan:
- 使用以下命令运行InterProScan:
interproscan.sh -i your_protein_sequences.fasta -f tsv -dp -goterms -pa -o interpro_results.tsv
其中:
* `-i your_protein_sequences.fasta` 是你的蛋白质序列文件。
* `-f tsv` 指定输出格式为TSV(制表符分隔值),便于后续的数据处理和分析。
* `-dp` 启用深度搜索模式,以提高注释的覆盖率。
* `-goterms` 启用Gene Ontology (GO) 术语注释。
* `-pa` 使用并行处理以加速注释过程(需要根据你的系统配置调整并行线程数)。
* `-o interpro_results.tsv` 指定输出结果的文件名。
-
分析结果:
- InterProScan运行完成后,会在指定的输出文件(在这个例子中是
interpro_results.tsv
)中提供详细的蛋白质结构域和功能注释信息。 - 这个文件通常包含以下列:
protein_name
: 蛋白质名称或标识符。sequence_length
: 蛋白质序列的长度。signature_library_match
: 结构域或功能注释所基于的数据库或签名库。signature_acc
: 结构域或功能注释的唯一标识符。signature_desc
: 结构域或功能注释的描述。start
: 结构域在蛋白质序列中的起始位置。end
: 结构域在蛋白质序列中的结束位置。score
: 结构域匹配的得分(如果适用)。status
: 结构域匹配的状态(例如,"T"表示确定的匹配,"C"表示条件性的匹配)。go_terms
: 相关的GO术语(如果可用)。
- InterProScan运行完成后,会在指定的输出文件(在这个例子中是
-
解读和可视化结果:
- 使用文本编辑器或数据处理工具(如Excel、R、Python等)打开和分析
interpro_results.tsv
文件。 - 根据需要筛选和汇总结果,例如按病毒种类、结构域类型或GO术语分类。
- 可以使用专门的可视化工具(如Cytoscape、GSEA或定制的脚本)将结果可视化,以帮助理解蛋白质的功能分布和网络。
- 使用文本编辑器或数据处理工具(如Excel、R、Python等)打开和分析
或者使用 eggNOG-mapper 对比 eggNOG 数据库进行功能注释。
-
安装 eggNOG-mapper:
- 如果你还没有安装 eggNOG-mapper,可以从 GitHub(https://github.com/eggnogdb/eggnog-mapper) 下载并按照提供的说明进行安装。
-
下载 eggNOG 数据库:
- 访问 eggNOG 网站(http://eggnogdb.embl.de/version/latest/download/)下载最新的 eggNOG 数据库。
- 解压下载的数据库文件,并记住解压后的目录路径。
-
准备蛋白质序列文件:
- 将你需要进行功能注释的病毒蛋白质序列整理成一个或多个人工fasta文件。
-
运行 eggNOG-mapper:
- 使用以下命令运行 eggNOG-mapper:
emapper.py -i your_protein_sequences.fasta --output outdir --cpu 4 --mode s --Diamond blastp --orthologs best --evalue 1e-5 --annotation cut_ga --evolutionary-distance 0.7 --search-tool diamond --database eggNOG_database_directory
其中:
* `-i your_protein_sequences.fasta` 是你的蛋白质序列文件。
* `--output outdir` 指定输出结果的目录。
* `--cpu 4` 设置使用的CPU核心数(根据你的系统配置调整)。
* `--mode s` 选择快速搜索模式(适用于大规模数据集)。
* `--Diamond blastp` 使用Diamond进行蛋白质比对。
* `--orthologs best` 只保留最佳的同源群注释。
* `--evalue 1e-5` 设置Diamond比对的E-value阈值。
* `--annotation cut_ga` 启用GO和EC编号的注释。
* `--evolutionary-distance 0.7` 设置进化距离阈值。
* `--search-tool diamond` 指定使用Diamond作为搜索工具。
* `--database eggNOG_database_directory` 指定eggNOG数据库的目录。
-
分析结果:
- eggNOG-mapper运行完成后,会在指定的输出目录(在这个例子中是
outdir
)中提供详细的蛋白质功能注释信息。 - 这个目录通常包含以下文件:
emapper.annotations
:包含每个蛋白质的详细注释信息,包括同源群、GO术语、EC编号等。emapper.best_hits.tsv
:包含每个蛋白质的最佳同源群注释。emapper.results.all_contigs.tsv
:包含所有比对结果的汇总信息。
- eggNOG-mapper运行完成后,会在指定的输出目录(在这个例子中是
-
解读和可视化结果:
- 使用文本编辑器或数据处理工具(如Excel、R、Python等)打开和分析
emapper.annotations
文件。 - 根据需要筛选和汇总结果,例如按病毒种类、GO术语或EC编号分类。
- 可以使用专门的可视化工具(如Cytoscape、 REVIGO、定制的脚本)将结果可视化,以帮助理解蛋白质的功能分布和网络。
- 使用文本编辑器或数据处理工具(如Excel、R、Python等)打开和分析
5. 病毒丰度和多样性分析
使用Bracken对Kraken2的结果进行校正,得到更准确的病毒丰度。
bracken -k viral_classification.kraken2 -o bracken_output -t $THREADS -c contig_lengths.txt
使用UCHIME或vFam进行嵌段式病毒的去冗余。
使用UCHIME进行去冗余:
UCHIME主要用于检测和去除PCR和测序过程中的假阳性序列(如chimeras)。虽然它最初设计用于16S rRNA基因的分析,但也可以应用于其他类型的序列,包括病毒序列。以下是一个基本的UCHIME命令行示例:
usearch -uchime_ref query_sequences.fasta -db reference_sequences.fasta -strand both -uchimeout uchime_output.uc
这里:
query_sequences.fasta
是你的待去冗余的病毒序列文件。reference_sequences.fasta
是你的参考序列文件,可以包含已知的病毒序列或其他相关序列。-strand both
表示在正反两条链上都进行去冗余分析。-uchimeout uchime_output.uc
指定输出结果的文件名。
UCHIME将生成一个.uc
格式的输出文件,其中包含了可能的chimeric序列的信息。你可以根据这些信息进一步过滤或去除潜在的冗余序列。
使用vFam进行去冗余:
vFam是一个专门针对病毒家族进行分类和去冗余的工具。它基于HMM(Hidden Markov Model)模型,可以识别和分类病毒序列。以下是一个基本的vFam命令行示例:
vfam classify --input query_sequences.fasta --output classified_sequences.fasta --hmms_dir vfam_hmms_directory
这里:
query_sequences.fasta
是你的待去冗余的病毒序列文件。classified_sequences.fasta
是输出的分类和去冗余后的序列文件。vfam_hmms_directory
是包含vFam HMM模型的目录。
vFam将对输入的序列进行分类,并将结果写入到classified_sequences.fasta
文件中。在这个过程中,vFam会自动去除冗余的序列。
使用Alpha diversity和Beta diversity指标(如Chao1、Shannon指数、UniFrac等)进行病毒群落多样性的分析。
Alpha多样性分析:
Alpha多样性主要关注单一样本内的物种丰富度和均匀度。以下是一些常用的Alpha多样性指数及其计算方法:
-
Chao1指数:
- Chao1指数是一种估计样品中未观测到的物种数目的方法,反映了物种丰富度。
- 在R语言中,可以使用
vegan
包中的estimateR
函数计算Chao1指数。
-
Shannon指数:
- Shannon指数考虑了物种丰富度和相对丰度,反映了物种多样性。
- 在R语言中,可以使用
vegan
包中的diversity
函数计算Shannon指数。
Chao1:对于基于病毒序列的数据,你可能需要先将数据转换为OTU(Operational Taxonomic Unit)表或者物种丰度矩阵,然后才能使用estimateR
函数。以下是一个基本的示例:
library(vegan)
# 假设你已经有了一个OTU计数矩阵otu_table,其中行是样本,列是OTUs
# 并且你已经有了一个样本分类信息的数据框sample_data
# 计算Chao1指数
chao1 <- estimateR(otu_table, method = "chao1")
# 将结果与样本分类信息合并
alpha_diversity <- cbind(sample_data, Chao1 = chao1)
在这个例子中,otu_table
是一个矩阵,其中每个元素表示对应样本中特定OTU的数量。estimateR
函数的method
参数设置为"chao1",以指示计算Chao1指数。
然而,如果你的数据是原始的病毒序列数据,你可能需要先进行一些预处理步骤,例如:
- 序列聚类:将相似的序列聚类为OTUs。
- 计算OTU丰度:统计每个样本中每个OTU的数量。
这些步骤通常可以通过使用其他生物信息学工具或R包(如DECIPHER
、cluster
等)来完成。一旦你得到了OTU计数矩阵,就可以使用estimateR
函数计算Chao1指数了。
Shannon指数以下是一个基本的R代码示例:
library(vegan)
# 假设你已经有了一个OTU计数矩阵otu_table,其中行是样本,列是OTUs
# 并且你已经有了一个样本分类信息的数据框sample_data
### 最后的话
最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!
### 资料预览
给大家整理的视频资料:
![](https://img-blog.csdnimg.cn/img_convert/2b6c1ae4ec0537edbe4e86543ca9cd7c.png)
给大家整理的电子书资料:
![](https://img-blog.csdnimg.cn/img_convert/cb95547de6ebcab001587c644d7bccf5.png)
**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以点击这里获取!](https://bbs.csdn.net/topics/618542503)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
是样本,列是OTUs
# 并且你已经有了一个样本分类信息的数据框sample_data
### 最后的话
最近很多小伙伴找我要Linux学习资料,于是我翻箱倒柜,整理了一些优质资源,涵盖视频、电子书、PPT等共享给大家!
### 资料预览
给大家整理的视频资料:
[外链图片转存中...(img-6w1TIVfx-1714199774717)]
给大家整理的电子书资料:
[外链图片转存中...(img-A5VjPAKx-1714199774718)]
**如果本文对你有帮助,欢迎点赞、收藏、转发给朋友,让我有持续创作的动力!**
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以点击这里获取!](https://bbs.csdn.net/topics/618542503)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**