数据准备脚本:Python Pandas OR esProc SPL?_esproc spl python


简单读写数据库时,Pandas代码足够优雅。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 1  | =connect("com.mysql.jdbc.Driver","jdbc:mysql://localhost:3306/testdb?user=root&password=password")  |
| 2  | =A1.query("select \* from product ")  |
| 3  | =T("d:/Orders.csv")  |
| 4  | =A1.update(A3, testdf; ORDERID)  |
| 5  | =A1.close()  |


SPL代码也很简单,整体逻辑与Pandas类似。区别在于,SPL可以把数据源信息写在配置文件里,代码里只要简单引用数据源名,具体来说,A1可以写成:connect(“myDB”)


**读写文本文件**


规则文本:读取csv文件,简单计算后写入新csv。Pandas:



data = pd.read_csv(“d:/Orders.csv”)
data[‘OrderDate’]=pd.to_datetime(data[‘OrderDate’])
result=data.groupby(data[‘OrderDate’].dt.year).agg({‘Amount’:[len,np.sum]})
result.to_csv(“d:/resultP.csv”)


Pandas代码很简洁,但仍有不足之处,一是不能自动解析日期时间类型;二是计算代码里大中小括号都有,既有表达式又有字符串,有明显的可优化之处,语言整体性不佳。


SPL实现相同的功能:




|  |  |
| --- | --- |
|  | A  |
| 1  | =T("d:/Orders.csv")  |
| 2  | =A1.groups(year(OrderDate);count(1),sum(Amount))  |
| 3  | =file("d:/resulS.csv").export@t(A2)  |


SPL代码也很简洁,且可自动解析日期时间类型,可以只用一种括号,可以只用表达式,语言整体性极佳。


不规则的文本:每三行对应一条记录,其中第二行含三个字段(集合的成员也是集合),将该文件整理成规范的结构化数据对象。Pandas:



data = pd.read_csv(“d:/threeLines.txt”,header=None)
pos_seq=[i//3 for i in range(len(data))]
def runSplit(x):
f123=x.iloc[1,0].split(“\t”)
f=[x.iloc[0,0],f123[0],f123[1],f123[2],x.iloc[2,0]]
return pd.DataFrame([f], columns=[‘OrderID’,‘Client’,‘SellerId’,‘Amount’,‘OrderDate’])
df=data.groupby(pos_seq).apply(runSplit)
df.reset_index(drop=True, inplace=True) #drop the Second Index


上述解析过程大体分三步:先将文本读为单字段的DataFrame;再进行有序分组,即每三行分一组;最后循环每一组,将组内数据拼成单记录的DataFrame,循环结束时合并各条记录,形成新的DataFrame。  
 遇到不规则的文本时,Pandas代码明显变复杂了,体现在以下几处。制造形如[0,0,0,1,1,1,2,2,2…]的分组依据时,需要用较复杂的for循环语句,先定义循环计数i,再用i整除并取商。用apply循环各组数据时,需要定义一个处理组内数据的函数,这个函数超出了一句,因此不能用Lambda表达式来简化定义过程(连Java等编译型语言都没有这种限制)。取DataFrame data的成员时,只能用函数iloc(或loc),而取list f123的成员时,可以直接用下标,两者都是集合,但用法大相径庭,只因为DataFrame不是原生类库,语言整体性较差,无法像原生类库那样享受简洁的语法规则。DataFrame本身有索引,apply拼合多个DataFrame时,会加上第二层索引,需要手工去掉一层。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 1  | =file("D:\\split.csv").import@si()  |
| 2  | =A1.group((#-1)\3)  |
| 3  | =A2.new(~(1):OrderID, (line=~(2).split("\t"))(1):Client,line(2):SellerId,line(3):Amount,~(3):OrderDate )  |


SPL的解析逻辑和Pandas一样,但代码简单多了。制造分组依据时,不用复杂的for循环语句,而是用更简单的group(…)循环函数,且无需定义循环计数,#就是默认的循环计数(~是默认的循环变量)。用new循环各组数据时,也要定义一个处理函数,但SPL支持强大且简洁的Lambda表达式,可以把多句代码直接写在new里,不必像Python那样手工定义完整的函数结构。从SPL的任何集合类型(包括序表)取成员时,都可以直接用下标,语法简洁一致。new函数最后也要拼合多条记录,但不会生成无用的新索引。SPL代码更简洁,底层原因是原生类库的语言整体性更强。


**多层数据**


简单查询:Json文件的上层为销售员,下层为订单,查询出符合条件的所有订单。Pandas:



JsonStr=open(‘D:/data.json’,‘r’).read()
JsonObj=json.loads(JsonStr)
df=pd.json_normalize(JsonObj,[‘Orders’])
df[‘OrderDate’]=pd.to_datetime(df[‘OrderDate’])
result=df.query(‘Amount>1000 and Amount<2000 and contains(“business”)’)


Pandas代码比较简单。要注意的是,dict、list等Python基本数据支持泛型,且与Json的object、array类型天然对应,适合表示多层Json(但不适合表达二维数据)。相反,DataFrame适合表达二维数据,但同一列的数据类型不可变,不是真正的泛型,无法表达一般的多层Json。DataFrame不擅长表达多层Json,需要用json\_normalize函数将多层Json转为二维DataFrame,才能进行后续计算,这说明Pandas的语言整体性不够好。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 1  | =file("d:/EO.json").read()  |
| 2  | =json(A1)  |
| 3  | =A2.conj(Orders)  |
| 4  | =A3.select(Amount>1000 && Amount<=2000 && like@c(Client,\"\*business\*\"))  |


序表不仅支持二维数据,也支持多层数据。序表支持真正的泛型,与Json的object、array类型天然对应,适合表示多层数据。多层数据是二维数据的一般形式,序表同样擅长表达二维数据,不需要额外的标准化动作,直接就能计算。


访问层次节点:对Json分组汇总,分组字段既有上层字段,也有下层字段。Pandas:



JsonStr=open(‘D:/data.json’,‘r’).read()
JsonObj=json.loads(JsonStr)
df=json_normalize(JsonObj,record_path=[‘Orders’],meta=[‘Name’,‘Gender’,‘Dept’])
result=df.groupby([‘Dept’,‘Client’]).agg({‘Amount’:[‘count’,‘sum’]}).reset_index()
result.columns = [‘Dept’,‘Clt’,‘cnt’,‘sum’]


Pandas DataFrame无法表达多层Json,也就不支持按树形的层次关系直观地访问数据,只能用normalize把多层数据转为二维数据,再访问扁平的二维数据。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 1  | =json(file("d:/data.json").read())  |
| 2  | =A1.groups(Dept,Orders.Client:Clt; count(Orders.OrderID):cnt, sum(Orders.Amount):sum)  |


SPL序表可以表达多层Json,支持多层数据的计算,比Pandas简洁优雅。多层数据计算的特征之一,是提供方便的语法用来表达树形的层级关系,比如上面代码中的点号"Orders.Client",可以自由引用任意节点的数据。当层级较多结构复杂时,这种引用方式可以明显提升表达效率。


同理可知,Pandas和SPL虽然都可以计算XML,但DataFrame不支持多层XML,必须转为二维结构,表达能力不强;SPL序表可以表达并计算多层XML,代码更加优雅。


与Json的normalize函数不同,Pandas没有为XML提供方便的标准化函数,官方推荐用XML计算语言把多层XML计算为二维XML,常用的XML计算语言有XSLT和XPath。为了计算XML,还得学习第三方语言,学习成本过高,这里就不举例了。


SPL整体性极佳,可以用与Json类似的代码解析XML,与Json相同的代码计算XML,学习成本很低。比如对多层XML进行分组汇总:




|  |  |
| --- | --- |
|  | A  |
| 1  | =file("d:\\xml\\emp\_orders.xml").read()  |
| 2  | =xml(A1,"xml/row")  |
| 3  | =A2.groups(Dept,Orders.Client:Clt; count(Orders.OrderID):cnt, sum(Orders.Amount):sum)  |


除了文件,Pandas和SPL也可以解析来自RESTful/WebService的多层数据,区别在于Pandas的语言整体性不佳,没有提供内置的RESTful/WebService接口,必须引入第三方类库。其中一种写法:



import requests
resp=requests.get(url=“http://127.0.0.1:6868/api/emp_orders”)
JsonOBJ=resp.json()


SPL整体性较好,原生支持多层数据和RESTful/WebService:



=json(httpfile(“http://127.0.0.1:6868/api/emp_orders”).read())


### 结构化数据对象


**生成**


Pandas的结构化数据对象是DataFrame,不仅可以由数据源生成,也可以直接构造,下面是常见的构造方法:



#用List构造,2个字段4条记录,行号(索引)是默认的0-3,列名是默认的0-1
df=pd.DataFrame([[1,‘apple’],[2,‘orange’],[3,‘banana’],[4,‘watermelon’]])
#用Array构造
pd.DataFrame(numpy.array([[1,‘apple’],[2,‘orange’],[3,‘banana’],[4,‘watermelon’]]))
#用Dict构造,列名是指定的one、two
pd.DataFrame({‘one’:[1,2,3,4],‘two’:[‘apple’,‘orange’,‘banana’,‘watermelon’]})


DataFrame由多个Series(列或字段对象)组成,下级是原子数据类型或对象(指针)。Pandas没有真正的记录对象,这在某些场景下会带来方便,但也提高了理解难度,编码时缺乏直观感。使用Pandas时,经常用到Python的原生类库和第三类库numpy里的数据对象,包括Set(数学集合)、List(可重复集合)、Tuple(不可变的可重复集合)、Dict(键值对集合)、Array(数组)等,这些数据对象都是集合,容易与Series和DataFrame发生混淆,互相转化困难,对初学者造成了不少困扰。除了外部类库的集合,Series与自家的集合也容易发生混淆,比如分组后的集合DataFrameGroupBy。这些都说明Pandas的语言整体性不强,缺乏来自底层的支持。


SPL的结构化数据对象是序表,同样可以构造生成:



//先构造出结构,再用序列填入数据,行号是0-3,列名是指定的one、two
T=create(one,two).record([1,“apple”,2,“orange”,3,“banana”,4,“watermelon”])
//先准备序列形式的数据(含列名),再构造生成
[“one”,“two”,1,“apple”,2,“orange”,3,“banana”,4,“watermelon”].record(2)
//用序表T0的结构作为新序表的结构,再填入数据
T0.create(one,two).record([1,“apple”,2,“orange”,3,“banana”,4,“watermelon”])


序表由多个Record(记录对象)组成,下级是原子数据类型或对象(指针)。序表有真正的记录对象,大多数场景下易于理解,编码直观。Record与单记录序表虽然本质不同,但业务意义相似,容易混淆,为了减少混淆,SPL经过精心设计,使两者的外部用法保持一致,通常不必特意区分。SPL只有两种集合,序列(类似List)和序表,前者是后者的基础,后者是有结构的前者,序表分组后的集合是序列,两者关系清楚泾渭分明转化容易,学习和编码的成本都很低。可以看出来,SPL可以从底层提供语法支持,整体性较好。  
 **访问数据**


Pandas DataFrame自带行号(从0开始)、字段号(列号)、字段名(列名),可以直接通过下标或字段名方便地访问记录:



#取行号列表,index相当于行号字段名
list(df.index)
#取第1条记录
df.iloc[1]
#区间取第1-3条记录(左闭右开)
df.iloc[1:4]
#步进(偶数位置)
df.iloc[1::2]
#倒数第2条(从1开始)
df.iloc[-2]
#用记录序号和字段序号取值
df1.iloc[1,0]
#用记录序号和字段名取值
df.loc[1,‘two’]


SPL序表自带行号(从1开始)、字段号、字段名,可以通过下标和字段名方便地访问记录,这方面SPL和Pandas区别不大,用法都很方便:



//取行号列表,#是行号的字段名
T.(#)
//取第2条记录(可简写为T(2))
T.m(2)
//区间取第2-4条记录(左闭右闭)
T.m(2:4)
//步进(偶数位置)
T.step(2,2)
//倒数第二条(从1开始)
T.m(-2)
//用记录序号和字段序号取值
T.m(2).#1
//用记录序号和字段名取值
T.m(2).two


行号(下标)的本质是高性能地址索引,除了行号,Pandas和SPL还提供了其他种类的索引,以及对应的查询函数,包括唯一值的哈希索引,有序值的二分查找索引。性能不是本文重点,且两者功能类似,这里就不多说了。


**维护数据**


修改指定位置的记录。Pandas:



df.loc[4,[‘NAME’,‘SALARY’]]=[‘aaa’,1000]


Pandas没有直接提供修改函数,而是用Series对象取出记录的部分字段,再用List去修改。Series这里表示的是记录,但通常表示列,List通常表示记录,但也可以表示列,这些规则初学者容易混淆。


SPL:



T.modify(5,“aaa”:NAME,1000:SALARY)


SPL直接提供了修改函数,符合初学者的常识。当然,SPL也可以取出记录再修改,两种方法各自适合不同的场景。


在指定位置插入新记录。Pandas:



record=pd.DataFrame([[100,“wang”,“lao”,“Femal”,“CA”, pd.to_datetime(“1999-01-01”), pd.to_datetime(“2009-03-04”),“HR”,3000]],columns=df.columns)
df = pd.concat([df.loc[:2], record,df.loc[3:]],ignore_index=True)


Pandas没有真正的记录对象,也没有直接提供插入记录的方法,间接实现起来较麻烦,先构造一条单记录的DataFrame,再将原DataFrame按指定位置拆成前后两个DataFrame,最后把三个DataFrame拼起来。很多易忽略的细节也要处理好,否则无法获得理想结果,比如构造记录时要保证字段名与原DataFrame相同,拼接新DataFrame时不能保留原来的行号。


SPL:



T.insert(3,100,“wang”,“lao”,“Femal”,“CA”,date(“1999-1-1”),date(“2009-3-4”),“HR”,3000)


SPL对记录比较重视,直接提供了插入记录的方法,代码简洁易于理解。


添加计算列。Pandas:



today = datetime.datetime.today().year
df[“Age”] = today-pd.to_datetime(df[“BIRTHDAY”]).dt.year
df[“Fullname”]=df[“NAME”]+ " " +df[“SURNAME”]


Pandas没有提供添加计算列的函数,虽然实现起来问题不大,但添加多个列就要处理多次,还是比较麻烦。Pandas的时间函数也不够丰富,计算年龄比较麻烦。


SPL:



T.derive(age(BIRTHDAY):Age, NAME+“”+SURNAME:Fullname)


SPL提供了添加计算列的函数,一次可以添加多个列,且时间函数更加丰富。


### 结构化数据计算


**计算函数**


Pandas内置丰富的库函数,支持多种结构化数据计算,包括:遍历循环apply\map\transform\itertuples\iterrows\iteritems、过滤Filter\query\where\mask、排序sort\_values、唯一值unique、分组groupby、聚合agg(max\min\mean\count\median\ std\var\cor)、关联join\merge、合并append\concat、转置transpose、移动窗口rolling、shift整体移行。


Pandas没有专门的函数进行记录集合的交、并、差等运算,只能间接实现,代码比较繁琐。Pandas会为类似的计算提供多个函数,比如过滤,这些函数的主体功能互相覆盖,只是参数约定\输出类型\历史版本不同,学习时要注意区分。


SPL的计算函数也很丰富,包括:遍历循环.()、过滤select、排序sort、唯一值id、分组group、聚合max\min\avg\count\median\top\icount\iterate、关联join、合并conj、转置pivot。


SPL对记录集合的集合运算支持较好,针对来源于同一集合的子集,可使用高性能集合运算函数,包括交集isect、并集union、差集diff,对应的中缀运算符是^、&、\。对于来源不同的集合,可用merge函数搭配选项进行集合运算,包括交集@i、并集@u、差集@d。


除了集合运算,SPL还有以下独有的运算函数:分组汇总groups、外键切换switch、有序关联joinx、有序归并merge、迭代循环iterate、枚举分组enum、对齐分组align、计算序号pselect\psort\ptop\pmax\pmin。Pandas没有直接提供这些函数,需要硬编码实现。


有大量功能类似的函数时,Pandas要用不同的名字或者参数进行区分,使用不太方便。而SPL提供了非常独特的函数选项,使功能相似的函数可以共用一个函数名,只用函数选项区分差别。比如,select函数的基本功能是过滤,如果只过滤出符合条件的第1条记录,可使用选项@1:



T.select@1(Amount>1000)


对有序数据用二分法进行快速过滤,使用@b:



T.select@b(Amount>1000)


函数选项还可以组合搭配,比如:



Orders.select@1b(Amount>1000)


结构化运算函数的参数有些很复杂,Pandas需要用选项或参数名来区分复杂的参数,这样易于记忆和理解,但代码难免冗长,也使语法结构不统一。比如左关联:



pd.merge(Orders, Employees, left_on=‘SellerId’, right_on=‘EId’, how=‘left’, suffixes=[‘_o’,‘_e’])


SPL使用层次参数简化了复杂参数的表达,即通过分号、逗号、冒号自高而低将参数分为三层,不过这样会增加一些记忆难度。同样左关联:



join@1(Orders:o,SellerId ; Employees:e,EId)


层次参数的表达能力也很强,比如join函数里的分号用于区分顶层参数序表,如果进行多表关联,只要继续加分号就可以。Pandas参数的表达能力就差多了,merge函数里表示DataFrame的选项只有left和right,因此只能进行两表关联。


Pandas和SPL都提供了足够丰富的计算函数,进行单个函数的基础计算时,区别不算大。但实际工作中的数据准备通常有一定复杂度,需要灵活运用多个函数,且配合原生的语法才能实现,这种情况下,两者的区别就比较明显了。


**同期比**


先按年、月分组,统计每个月的销售额,再计算每个月比去年同月份的销售额的增长率。Pandas:



sales[‘y’]=sales[‘ORDERDATE’].dt.year
sales[‘m’]=sales[‘ORDERDATE’].dt.month
sales_g = sales[[‘y’,‘m’,‘AMOUNT’]].groupby(by=[‘y’,‘m’],as_index=False)
amount_df = sales_g.sum().sort_values([‘m’,‘y’])
yoy = np.zeros(amount_df.values.shape[0])
yoy=(amount_df[‘AMOUNT’]-amount_df[‘AMOUNT’].shift(1))/amount_df[‘AMOUNT’].shift(1)
yoy[amount_df[‘m’].shift(1)!=amount_df[‘m’]]=np.nan
amount_df[‘yoy’]=yoy


分组汇总时,Pandas很难像SQL那样边计算边分组,通常要先追加计算列再分组,这导致代码变复杂。计算同期比时,Pandas用shift函数进行整体移行,从而间接达到访问“上一条记录”的目的,再加上要处理零和空值等问题,整体代码就更长了。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 2  | =sales.groups(year(ORDERDATE):y,month(ORDERDATE):m;sum(AMOUNT):x)  |
| 3  | =A2.sort(m)  |
| 4  | =A3.derive(if(m==m[-1],x/x[-1] -1,null):yoy)  |


分组汇总时,SPL可以像SQL那样边计算边分组,灵活的语法带来简练的代码。计算同期比时,SPL直接用[-1]表示“上一条记录”,且可自动处理数组越界和被零除等问题,整体代码较短。


除了用[x]表示相对位置,SPL还可以用[x:y]表示相对区间,比如股票的3日移动平均值:



T.derive(Amount[-2:0].avg():ma)


Pandas也可以表示相对区间,但由于语言整体性不佳,无法从语法层面直接支持,所以提供了一个新函数rolling。同样计算股票的3日移动平均值:



df[‘ma’]=df[‘Close’].rolling(3, min_periods=1).mean()


**贷款分期**


根据多项贷款的基本信息(金额、期数、利息),计算每项贷款每一期的还款明细(当期还款额、当期利息、当期本金、剩余本金)。Pandas:



loan_data = … #省略loan_data的取数过程
loan_data[‘mrate’] = loan_data[‘Rate’]/(100*12)
loan_data[‘mpayment’] = loan_data[‘LoanAmt’]*loan_data[‘mrate’]np.power(1+loan_data[‘mrate’],loan_data[‘Term’]) \ /(np.power(1+loan_data[‘mrate’],loan_data[‘Term’])-1)
loan_term_list = []
for i in range(len(loan_data)):
loanid = np.tile(loan_data.loc[i][‘LoanID’],loan_data.loc[i][‘Term’])
loanamt = np.tile(loan_data.loc[i][‘LoanAmt’],loan_data.loc[i][‘Term’])
term = np.tile(loan_data.loc[i][‘Term’],loan_data.loc[i][‘Term’])
rate = np.tile(loan_data.loc[i][‘Rate’],loan_data.loc[i][‘Term’])
payment = np.tile(np.array(loan_data.loc[i][‘mpayment’]),loan_data.loc[i][‘Term’])
interest = np.zeros(len(loanamt))
principal = np.zeros(len(loanamt))
principalbalance = np.zeros(len(loanamt))
loan_amt = loanamt[0]
for j in range(len(loanamt)):
interest[j] = loan_amt
loan_data.loc[i][‘mrate’]
principal[j] = payment[j] - interest[j]
principalbalance[j] = loan_amt - principal[j]
loan_amt = principalbalance[j]
loan_data_df = pd.DataFrame(np.transpose(np.array([loanid,loanamt,term,rate,payment,interest,principal,principalbalance])),columns = [‘loanid’,‘loanamt’,‘term’,‘rate’,‘payment’,‘interest’,‘principal’,‘principalbalance’])
loan_term_list.append(loan_data_df)
loan_term_pay = pd.concat(loan_term_list,ignore_index=True)


上面代码用两层循环作为主体结构,先循环每项贷款,再循环生成该项贷款的每一期,然后将各期明细转置为DataFrame,并追加到事先准备好的list里,继续循环下一项贷款,循环结束后将list里的多个小DataFrame合并为一个大DataFrame。业务逻辑是比较清晰的,就是按公式计算各项数据项,但因为两层循环的结构比较复杂,数据类型的转换比较麻烦,导致代码显得冗长。


SPL:




|  |  |
| --- | --- |
|  | A  |
| 1  | //省略loan\_data的取数过程  |
| 2  | =loan\_data.derive(Rate/100/12:mRate,LoanAmt\*mRate\*power((1+mRate),Term)/(power((1+mRate),Term)-1):mPayment)  |
| 3  | =A2.news((t=LoanAmt,Term);LoanID, LoanAmt, mPayment:payment, Term, Rate, t\* mRate:interest, payment-interest:principal, t=t-principal:principlebalance)  |


业务逻辑上SPL和Pandas几乎一样,但因为语言整体性强,两层循环可以用一个news函数实现,也不需要麻烦的类型转换,因此代码大幅简化。


**按工龄分组**


按员工工龄将员工分组,并统计每组的员工人数,有些组之间有重复。Pandas:



#省略员工信息emp的取数过程
def eval_g(dd:dict,ss:str):
return eval(ss,dd)
employed_list=[‘Within five years’,‘Five to ten years’,‘More than ten years’,‘Over fifteen years’]
employed_str_list=[“(s<5)”,“(s>=5) & (s<10)”,“(s>=10)”,“(s>=15)”]
today=datetime.datetime.today()
emp[‘HIREDATE’]=pd.to_datetime(emp[‘HIREDATE’])
employed=((today-emp[‘HIREDATE’])/np.timedelta64(1,‘Y’)).apply(math.floor)
emp[‘EMPLOYED’]=employed
dd={‘s’:emp[‘EMPLOYED’]}
group_cond = []
for n in range(len(employed_str_list)):
emp_g = emp.groupby(eval_g(dd,employed_str_list[n]))
emp_g_index=[index for index in emp_g.size().index]
if True not in emp_g_index:
sum_emp=0
else:
group=emp_g.get_group(True)
sum_emp=len(group)
group_cond.append([employed_list[n],sum_emp])
group_df=pd.DataFrame(group_cond,columns=[‘EMPLOYED’,‘NUM’])


Pandas擅长等值分组,也可实现简单的区间枚举分组,遇到本题这种可重复的枚举分组只能硬编码实现,大概过程:循环分组条件,转为等值分组解决问题,处理分组子集,最后合并结果。此外,Pandas没有计算工龄的函数,也要手工实现。


SPL:



![img](https://img-blog.csdnimg.cn/img_convert/c9cc3b114f090166feb883ff6e3237cb.png)
![img](https://img-blog.csdnimg.cn/img_convert/f4a36af9ea7b45460c13ed10337a6125.png)
![img](https://img-blog.csdnimg.cn/img_convert/394c8c944351c6e43a6b83650edbe935.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

group)
group_cond.append([employed_list[n],sum_emp])
group_df=pd.DataFrame(group_cond,columns=['EMPLOYED','NUM'])

Pandas擅长等值分组,也可实现简单的区间枚举分组,遇到本题这种可重复的枚举分组只能硬编码实现,大概过程:循环分组条件,转为等值分组解决问题,处理分组子集,最后合并结果。此外,Pandas没有计算工龄的函数,也要手工实现。

SPL:

[外链图片转存中…(img-fZ8aHBQM-1714518050105)]
[外链图片转存中…(img-LSmA9Dwa-1714518050105)]
[外链图片转存中…(img-Soit1FtV-1714518050106)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值