这一次的活动与上次类似,依然是团战,本次担任话题团队1的主持人,相信依然可以在大家成长的道路上,为大家带去一点帮助。
大家可以扫描活动页顶部Banner中的二维码来加入话题专属的团战群:大数据技术分享话题团。
二、先手跳大【勇于开团】
既然作为话题主持人,那么面对脏活、累活定当义不容辞!要为大家把路铺好,做好导引,希望有更多的小伙伴能够加入进来,在下能做的也就只有抛砖引玉了。
1. 个人经历
小编从事Java全栈开发、大数据高级开发、大数据培训多年,并与腾讯云大学、国开大学等多个知名培训机构、平台、高校进行过多次合作。目前已完成第二硕士学位【CS Master】的进修,生活在地球另一端,当前从事人工智能相关领域的工作。平时的空闲时间基本都会用来做技术分享,或与粉丝群内小伙伴互动,希望自己的粗浅经历能够帮助到大家。
2. Buff自取
既然要先手开团,那必然要放个大或者丢个控。大数据领域十分庞杂,虽然也可以划入到零门槛学习的类别,但整体的学习成本【主要是时间成本】与难度着实要比一般的软件开发高,也就更不容易坚持。不过好在挑战与机遇一直都是并存的,在你战胜自己的同时,也许你也同样PK掉了一批和你同赛道的人,这也就是技术和学习的魅力。这里小编为大家推荐了四个主要的写作方向,结合自己写过的一些文章,希望对大家能有一点点的启发:
- 角度一:技术向
大家可以从大数据生态圈中各个框架的学习教程、心得、爬坑攻略等方面入手,使用一篇文章完整描述一个实际问题的解决方法,也可以在活动周期内用一组系列文章为大家带去完整的框架核心用法。
【例文】Hadoop全分布式部署 - CentOS(结尾附视频)
- 角度二:场景向
大数据的核心是数据流与业务流,目的是为企业增加收益或进行辅助决策。对于不同的业务场景,可能需要使用完全不同的技术架构,如离线计算、实时计算、私有云、公有云,以及是否需要对数据进行脱敏处理等等细节上的考虑。可以结合工作中的实际项目,充分解析技术栈中各个组件的特点与适用场景,描述一个完整的解决方案。
【例文】如何用开源组件“攒”出一个大数据建模平台?
- 角度三:算法向
在数据分析领域中,大数据集群为基本的统计分析/结构化处理提供了有力的保障。但对于业务的垂直领域,需要使用各种算法模型来完成数据挖掘与分析。除了介绍一些可以直接使用的经典算法,同样可以结合业务场景提出相应的建模方案,或在已有的模型上进行深度调参。【闻道有先后,术业有专攻,这不是小编擅长的领域,溜了溜了】
- 角度四:解读向
目前大数据专业几乎已经普及到了所有的高校中,越来越多的小伙伴正在学习大数据,或准备学习大数据。在这里建议大家不要再去泛泛的写一些介绍大数据的文章,可以具体的去解读某个数据分析场景、剖析某个框架的特点、介绍大数据的市场需求、分享个人学习路线等。
【例文】大数据到底应该如何学?
- 其它角度
以上角度仅供参考,同样欢迎大家围绕大数据的话题另辟蹊径,分享业内趣闻、行业动向、经验总结等等内容。如:跨过2019 - 如何立一个新的Flag?且看行业解读、东大毕业生与大数据架构师的对决(结尾附视频)。
三、兵精粮足【底蕴深厚】
1. 写作模板
兵马未动,粮草先行。小编已经在创作模板中为大家准备好了以上几个角度的说明,并且做了更深入的解释和提示,大家可以直接参考使用。【点击大数据技术分享话题内的发布文章按钮】
2. 精兵良将
小编在话题挑战专属群内会不定期邀请业内深耕多年的老伙计,和大家互动交流,并为大家建议一些方向。不过,如果有那种逮住一个人就往死里圈的,我一定也会毫不犹豫的把你叉出去。
除此之外,小编的公众号正在进行成长之路系列文章的更新,每期嘉宾都会分享自己所在领域的成长经历、学习建议、行业状态等,并使用图文+语音的形式为大家带去一场场与众不同的盛宴。
本系列每周一晚更新一篇,目前已经邀请到区块链博士、【谷歌、微软、字节跳动】工程师、项目经理、CSDN头部博主以及各领域优秀的小伙伴,为大家带来开发、测试、UI设计、算法、SAP等等方面的分享,点击下方卡片马上关注【如果你也想成为分享者,可以与我联系】。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**