OpenAI 最近发布的 o1 系列模型很火,不过在大多数场景下,GPT-4o 系列还是更合适的选择。但很多开发者可能还没有尝试过 GPT-4o 的 API,这往往是因为 “网络、支付、价格” 这三大障碍实在难以跨越。
今天魔法哥就要分享一种免费调用 GPT-4o API 的方法,非常适合个人开发者进行学习和实践。亲测可用,千万不要错过!
免费计划
GitHub 现在已经不仅是一家代码仓库托管服务商,在被微软收购之后,它已逐渐发展成为覆盖软件研发全流程的大平台。不久前,GitHub 还推出了他们的模型市场,供开发者体验和选择当前的主流模型——这其中自然也包含了 OpenAI 家的旗舰模型。
背后有财大气粗的微软 Azure 云服务支持,这个市场目前上架了约 30 款知名大模型,并且免费提供 API 调用额度。说到这里,大家应该明白,开头提到个人开发者所面临的三大障碍都一一解除了:
- 网络障碍? 直连 Azure 云服务,国内流畅访问。
- 支付障碍? 无需海外信用卡,无需企业资质,只要有 GitHub 账号就行。
- 价格障碍? 免费调用,不花钱!
接下来,跟着魔法哥一步一步操作,去获取自己的 GPT-4o 免费 API 吧!
操作指南
简单来说,我们要完成以下三步:申请权限、创建 Token、验证可用。
申请权限
目前 GitHub 模型市场的免费 API 权限还不是完全开放的,需要用户申请并排队。我们登录自己的 GitHub 账号,打开模型市场的首页( github.com/marketplace… ),可以看到目前上架的所有模型。
我们点击模型列表的第一项,也就是 “Get early access …” 这个大大的申请入口,会进入申请表单页面:
根据自己的情况填写表单,提交之后,就可以等待审核了。魔法哥在申请后的第 5 天就收到了审核通过的邮件,所以大家耐心等待即可。
审核通过之后,我们再次回到模型市场,点开各个模型的详情页,可以了解模型的简介、测评得分、授权协议等详细信息。
此外,我们还可以在网页界面上直接体验和调试这些模型。比如,进入 GPT-4o 的 “Playground” 页面( github.com/marketplace… ),可以直接与模型对话,而且可以调整系统提示词、Temperature 等模型参数,是个不错的调试工具。
这个页面还提供了详细的 API 接入教程,大家可以详细探索。当然,本文已经提炼了最精华的信息,下面的步骤会帮助你快速通关。
创建 Token
要调用这些模型的 API,我们还需要有一个 GitHub Token 来证明自己的身份。
这个 Token 和我们常说的 LLM token 不是一回事哈。这里的 Token 是 GitHub 为我们提供的身份令牌,我们拿自己的令牌作为 API Key 来调用模型的 API,API 服务器就可以根据这个令牌来验证我们在 GitHub 上是谁、是否具有调用权限。
如果你以前调用过 GitHub 的 API,应该对这个 Token 并不陌生,你以前创建过的任何一个 GitHub Token 都可以拿来用。如果你还没有,也不用担心,下面我们一起来走一遍创建流程。
首先,我们需要打开 GitHub Token 的设置页面( github.com/settings/to… )。这里需要提醒一下:在默认情况下,这里创建的 Token 具有最高权限,一旦漏泄,别人可以拿这个 Token 做很多危险操作。
因此,接下来,魔法哥建议大家在左侧菜单中点击 “Fine-grained tokens”,创建一个最低权限的 Token,专门用来调用模型 API。在这个页面中,我们点击右上角的 “Generate new token” 按钮,进入创建页面:
需要注意的字段有:
- Token name(Token 名称):这里填写 Token 的用途,比如 “GitHub Models” 就很清晰直观。
- Expiration(过期时间):可以选择长一些的时间,比如 90 天,最长可以手动设置为一年。Token 到期后,不用删除重建,可以在原来的名称下重新生成。生成新 Token 之后,需要把所有用到老 Token 的地方都替换成新的。
- Repository access(代码仓库访问权限):这里保持默认的 “Public Repositories (read-only)” 即可,这是最小的访问权限范围。
其他信息都不需要修改,直接提交即可。提交成功之后,我们会进入所有 Token 的列表页面,可以看到刚刚创建的 Token。
此时,一定要记得立即点击复制,保存下来备用。因为一旦刷新这个页面,我们就再也看不到这个 Token 的实际内容了。(别紧张,如果你真的忘了复制出来,可以点进它的详情页,重新生成一次就好。)
验证可用
这一步就比较简单了,也是我们最后收获成果的一步。
大家可能读过魔法哥写的[《Kimi API 还没用起来?请看这篇无门槛快速入门指南》]这篇文章,它讲述了普通用户和开发者如何把大模型 API Key 应用到海量的 AI 工具或自己开发的 AI 应用中。
这篇文章里提到调用大模型 API 的 “三要素”。对于本文获取的 GPT-4o 免费 API 来说,这三项的内容分别是:
- API base URL:
https://models.inference.ai.azure.com
(注意:结尾没有/v1
这一层路径。) - API Key:我们刚刚创建的 GitHub Token。
- 模型名称:
gpt-4o
(其他可选的还有gpt-4o-mini
等模型。)
有了这 “三要素”,我们就可以开始验证 API 是否可用了。我们可以参考上面这篇文章,通过 Postman、Python 脚本、NextChat 网页版、Dify 智能体搭建平台、浏览器插件等方式,调用这个 API,看看是否能够正常返回结果。
如果你不想研究繁琐的配置,可以尝试魔法哥开发的这款极简的网页版聊天机器人( simple-chat.cmcm.app )。填入上面的 “三要素”,就可以开始和 GPT-4o 对话了。
你可能还会问
有啥限制?
由于 GitHub 的这个免费计划面向个人开发者,意在鼓励更多用户迈入 AI 应用开发的大门,因此它有一定的用量限制。对于像 4o 这样的高级模型来说,具体限制如下:
- 请求数:≤10 次/分钟,≤50 次/天
- 并发数:2
- 每个请求的 token 数:8000 输入 + 4000 输出
这个额度对于我们自己使用一些小工具,或者开发调试小应用来说,应该是足够了。
生产环境能用吗?
当你开发的应用已经成熟,准备发布到生产环境时,这个免费服务显然就不适用了。此时,GitHub 建议迁移到 Azure 的付费服务。
这个迁移过程并不需要改代码,只需要把 GitHub Token 换成 Azure 付费账号提供的 Token 就可以了。
个人开发者开通 Azure 账号还是有着不小的门槛,此时可以考虑 API2D 这样的大模型 API 聚合平台( cmcm.link/p/api2d ),按量计费,随充随用,相当适合个人开发者和小型团队。
o1 模型呢?
眼尖的同学一定看到了,OpenAI 最新最火的 o1 系列模型也在这个模型市场上架了,目前有 o1-preview
和 o1-mini
两个版本可选。
这两款模型确实也提供了免费计划,不过仅面向 GitHub Copilot 付费用户,而且需要单独申请。因此魔法哥就没有展开介绍了。
小结
对于个人开发者和普通的 AI 爱好者来说,GitHub 模型市场提供的免费 API 服务确实是十分便捷的实践机会。我们可以通过这个平台,体验到当前最先进的 AI 模型,开启自己的 AI 应用开发之旅!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓