教你5分钟本地部署部署AI大模型,让你从此以后再也不愁没有AI可用

随着人工智能(AI)和机器学习(ML)技术的迅猛发展,AI模型的规模和复杂度也在不断增加。这些大规模模型,如大型语言模型(LLMs)、计算机视觉模型和复杂的推荐系统,通常需要大量的计算资源来训练和推理。云计算平台提供了便捷的解决方案,但本地部署AI大模型有其独特的优势和必要性。

大模型本地部署,顾名思义就是把大模型部署到我们本地的笔记本或者台式机上。

为什么选择本地部署AI大模型?

1. 数据隐私与安全性

本地部署可以更好地保护数据隐私,避免将敏感数据传输到云端,减少数据泄露的风险。对于某些行业,如医疗、金融、政府等,对数据安全和隐私的要求尤为严格。

2. 控制与独立性

本地部署允许用户完全控制模型的运行环境、数据处理和模型更新,减少对第三方服务的依赖,提供更高的自主性和灵活性。

3. 性能与成本

在某些情况下,本地部署可以提供更好的性能,特别是当需要频繁进行推理时。同时,长期来看,本地部署可能比持续使用云服务更具成本效益。

4.科研需求

在一个局域网内,可以在服务器部署一个AI大模型,在内网局域网内基本上所有人都可以用这个大模型,可以说很方便。

由于大模型本身动辄几十亿甚至上百亿的参数,使用普通的方法去部署大模型会非常吃力。为此,研究员们开发了很多本地部署的框架的应用来帮助我们更好的进行本地部署。

可本地部署的AI大模型盘点

1. ollama 本地部署

首先声明一下,ollama包括一些其他的AI大模型,都是比较吃GPU的,因此运存这个玩意就比较重要了。个人感觉,如果拿笔记本部署的话6G以上肯定要有,不然根本跑不起来

既然是本地部署,首先肯定要先下载一个本地部署的软件或者工具,作为一个载体。安装包获取在文末。

下载完成以后,双击安装就可以,点击install直接安装就行,不用多管。

个人感觉这个羊驼,有点可爱

因为这个Ollama 默认是没有 webui 界面的,因此如果想要安装的话,需要另外安装anythingllm或者Docker。这两个的安装包也在文末。

anythingllm的配置:

双击安装包以后,正常安装流程。等待安装完成以后,进入界面

点击,Getstart,后面就开始配置使用了

注意这个地方标清了具体所需的内存大小,所以一定要保证内存是够的。

点击激活以后,后面就可以使用了。

安装Docker:

安装包在文末可以获取

双击exe文件

点击ok等待安装完成,可能需要重启电脑

回到桌面以后,双击安装的Docker,点击Accept,在选择第一个就可以

然后再按windows+r,输入cmd,然后输入

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

安装完成通过本地地址:http://127.0.0.1:3000 进行访问,看到下方页面说明安装成功!

然后按sign in登陆进去,在选择自己想要的模型就行

2、GPT4All

GPT4All 是一个开源项目,旨在提供一个易于使用的平台,让任何人都能在本地设备上都能免费运行和体验大型语言模型(LLM)如GPT(Generative Pre-trained Transformer)系列模型。它的目标是使人工智能技术更普及和可访问,特别是对于那些没有强大计算资源或云服务访问权限的用户。

以下是GPT4All支持的Ai大模型!

  • GPT-3

  • GPT-Neo

  • GPT-J

  • LLaMA

  • Grok

找到文末获取的安装包,双击安装包

基本上点下一步下一步就行了,注意修改安装路径

然后在桌面上找到GPT4All,双击打开

下载我们想要的模型,这里以目前在开源大模型领域,最强的Llama3为例!

下载完模型以后,选择模型进行聊天就行了!

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户之前问过有没有类似FastGPT的一键部署工具,我推荐了包括LangChain-Chatchat在内的几个选项。现在用户具体询问如何部署LangChain-Chatchat,我需要详细说明步骤。首先,我需要回忆之前提供的部署命令是否准确,可能用户已经尝试过但遇到了问题,或者需要更详细的指导。 用户可能是开发者或者有一定技术背景的人,想要自己搭建一个中文知识库问答系统。他们可能更关心具体的步骤、依赖项、配置以及常见问题的解决方法。我需要分步骤讲解,确保每个环节都清晰,比如环境准备、克隆仓库、安装依赖、配置模型、启动应用等。 同时,用户可能对本地模型和在线模型的选择有疑问,需要说明两者区别和配置方法。另外,常见问题如端口冲突、依赖安装失败、模型加载问题,这些都需要预先给出解决方案,帮助用户避免踩坑。 还要注意用户可能是在不同的操作系统上部署,比如Linux或Windows,但根据项目文档,可能主要支持Linux,需要明确指出。此外,硬件要求如RAM和GPU是否必要,也需要提及,特别是如果用户资源有限,可能需要调整模型选择。 最后,提供官方文档链接和社区支持,方便用户进一步查阅。确保回答结构清晰,步骤详细,同时语言简洁易懂,避免过于技术化的术语,但又要足够准确。</think>以下是 **LangChain-Chatchat 的详细部署指南**,涵盖本地与云端部署流程,建议根据硬件条件选择方案: --- ### **一、基础环境准备** 1. **硬件要求** - **最低配置**:CPU 4核 / 内存 16GB(运行小模型如 ChatGLM3-6B) - **推荐配置**:GPU 显存 ≥ 16GB(运行 Qwen-72B 等大模型) 2. **软件依赖** - Python 3.8+ - CUDA 11.7+(如需 GPU 加速) - Git、Docker(可选) --- ### **二、本地部署步骤** #### **1. 克隆代码库** ```bash git clone https://github.com/chatchat-space/Langchain-Chatchat.git cd Langchain-Chatchat ``` #### **2. 安装依赖** ```bash # 使用官方安装脚本(自动处理Python包) python install.py # 或手动安装 pip install -r requirements.txt --upgrade ``` #### **3. 配置模型路径** 修改 `configs/model_config.py`: ```python # 示例:使用智谱AI的在线API(快速体验) MODEL_ROOT_PATH = "zhipuai" API_KEY = "your_api_key_here" # 若使用本地模型(需提前下载模型文件) # MODEL_ROOT_PATH = "/path/to/your/models" # 例如使用 ChatGLM3-6B: # MODEL_PATH = {"chatglm3-6b": "THUDM/chatglm3-6b"} ``` #### **4. 初始化知识库** ```bash # 生成默认向量数据库(需要约5分钟) python init_database.py --recreate-vs ``` #### **5. 启动应用** ```bash # 启动API服务(默认端口: 7861) python startup.py -a # 启动Web界面(默认端口: 8501) python startup.py --all-webui ``` --- ### **三、云端部署(Docker方案)** #### **1. 构建镜像** ```bash docker build -t langchain-chatchat:latest . ``` #### **2. 运行容器** ```bash # 映射端口并挂载模型目录 docker run -d --name chatchat \ -p 7861:7861 -p 8501:8501 \ -v /path/to/models:/app/models \ langchain-chatchat:latest ``` --- ### **四、关键配置说明** 1. **模型选择** - **本地模型**:需提前从 HuggingFace 或 ModelScope 下载模型文件 - **在线API**:支持智谱AI、百度文心、OpenAI等(需申请API Key) 2. **知识库管理** - 支持格式:PDF/TXT/Markdown/Word - 添加文件:将文档放入 `knowledge_base` 目录后,通过Web界面上传 3. **性能优化** ```python # 修改 configs/server_config.py HTTPX_DEFAULT_TIMEOUT = 300 # 超时时间 VECTOR_SEARCH_TOP_K = 5 # 检索结果数量 ``` --- ### **五、常见问题排查** | **问题现象** | **解决方案** | |---------------------------|---------------------------------------| | 启动时报错 `CUDA out of memory` | 换用小模型 / 减少 `MAX_GPU_MEMORY` 参数 | | 知识库检索结果不准确 | 检查文档分块长度(建议 500-800字) | | API请求超时 | 调整 `HTTPX_DEFAULT_TIMEOUT` 至 600 | | 端口冲突 | 修改 `configs/server_config.py` 中的端口号 | --- ### **六、官方资源** - GitHub仓库:https://github.com/chatchat-space/Langchain-Chatchat - 在线Demo:https://chatchat.arcsoft.com.cn - 中文文档:https://langchain-chatchat.readthedocs.io --- **提示**:首次部署建议优先使用 **在线API模式**(如智谱AI),避免本地模型下载和硬件兼容性问题。若需定制功能,可修改 `server_config.py` 中的路由逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值