利用Open Web UI实现DeepSeek R1完全体+联网搜索功能,详细指南!


一、为什么选择Open Web UI?五大核心优势

Open Web UI开源地址[1]

1.开源免费 - 无商业限制,代码透明可审计2.轻量化设计 - 仅需300MB内存即可流畅运行3.隐私保障 - 数据100%本地化处理,无云端传输风险4.跨平台支持 - 基于Docker实现Mac/Windows/Linux全兼容5.模块化扩展 - 支持插件机制,可对接API/数据库等开发场景


二、安装方案对比:Docker vs 原生编译

|
方式

|

耗时

|

依赖项

|

维护难度

|

适用场景

|
| — | — | — | — | — |
| Docker |

3分钟

|

仅需Docker

|

|

快速部署、环境隔离需求

|
|

源码编译

|

15min+

|

Node.js/Python

|

⭐⭐⭐

|

深度定制开发

|

推荐选择Docker方案:避免环境冲突,支持一键回滚版本


三、手把手Docker安装教程

步骤1:环境准备(先安装Docker)
# 检查Docker状态(需已安装Docker Desktop)``docker --version``# 输出示例:Docker version 24.0.7, build afdd53b
步骤2:拉取镜像并运行
使用默认配置进行安装(博主macOS mini m4,使用了第一条)
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
如果 Ollama 位于不同的服务器上,请使用以下命令:
#要连接到另一台服务器上的 Ollama,请更改OLLAMA_BASE_URL为该服务器的 URL:` `docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
要运行支持 Nvidia GPU 的 Open WebUI,请使用以下命令:
docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda
如果您仅使用 OpenAI API,请使用此命令:
docker run -d -p 3000:8080 -e OPENAI_API_KEY=your_secret_key -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
关键参数说明:

-p 8080:8080:将容器端口映射到本地8080•-v:数据卷挂载防止配置丢失•--restart=always(可选):开机自启

步骤4:访问控制台

浏览器打开 http://localhost:8080
👉 首次登录建议设置管理员密码


四、运维管理命令速查

# 停止/启动服务``docker stop openwebui && docker start openwebui``   ``# 查看实时日志``docker logs -f openwebui``   ``# 升级到最新版``docker pull open-web-ui/official:latest && docker-compose down && docker-compose up -d

五、使用DeepSeek R1+联网功能

•基础设置API KEY

•设置密钥参数(这里的密钥和模型参数 我推荐使用硅基流动的DeepSeek R1模型实现)可以参考我往期的文章: DeepSeek R1 API替代方案全解析:手把手教你无缝迁移至硅基流动(附实战代码)

•选择联网的浏览器(这里推荐使用duckduckgo 唯一的缺点是需要可以访问国外的网络)如果国内用户推荐使用Brave 但是需要注册token 才能方便的使用 连接参数和线程数量 都可以根据实际需求调整

•测试结果(能获取到最新2025年春节表演的节目)


六、横向竞品对比分析

|
产品

|

部署复杂度

|

资源占用

|

隐私保护

|

扩展性

|

学习成本

|
| — | — | — | — | — | — |
| Open Web UI |

⭐⭐

|

150MB

|

✅加密存储

|

插件市场

|

|
|

LocalStack

|

⭐⭐⭐

|

1GB+

|

❌模拟AWS

|

仅限云服务

|

|
|

Adminer

|

|

50MB

|

|

单一数据库

|

|
|

phpMyAdmin

|

⭐⭐

|

200MB

|

|

MySQL专用

|

|

💡 核心差异:Open Web UI在保持轻量级的同时,提供了面向开发者的通用型接口管理能力,而非局限于特定服务。


七、应用场景推荐

•🛠️ 本地API调试:替代Postman的私有化部署方案•🔒 敏感数据操作:企业内部系统的安全操作门户•🧪 原型开发:快速搭建功能演示界面


AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 配置 Deepseek-R1 设备进行网络连接 对于希望配置 Deepseek-R1 设备以实现网络连接的情况,主要依赖于运行该模型的基础环境设置以及所使用的工具特性。由于 Deepseek-R1 主要通过 Ollama 工具部署,并利用 Open Web UI 提供交互界面[^1],因此网络连接的配置更多现在主机系统的网络设置上。 #### 服务器端网络配置 确保用于部署 Deepseek-R1 的服务器具备有效的互联网访问权限至关重要。这通常涉及到: - **防火墙规则调整**:确认服务器上的防火墙允许必要的入站和出站流量。 - **DNS解析正常工作**:验证域名系统(DNS)能够正确解析外部地址,这对于获取更新或其他在线资源非常重要。 如果采用的是云服务提供商,则需遵循对应平台提供的文档完成上述配置;如果是自托管硬件,则可能还需要考虑路由器级别的端口转发等问题。 #### 客户端接入方式 为了让客户端顺利连接至已部署好的 Deepseek-R1 实例,除了保证服务器本身可被外界访问外,还需注意以下几点: - 对于远程访问场景,建议使用 `tmux` 或者 `screen` 来维持长时间稳定会话,防止因意外断开而导致的服务中断[^2]。 - 如果希望通过浏览器与 Deepseek-R1 进行互动,那么需要确保Open Web UI 正常运作并且可以通过指定URL 访问到相应页面。 至于具的命令行操作部分,在成功安装Ollama 后,可通过如下指令下载并启动 Deepseek-R1 模型实例: ```bash ollama run deepseek-r1:70b ``` 此过程假定读者已经按照官方指导完成了前置准备工作,包括但不限于 Python 环境搭建、pip 包管理器升级等必要步骤。 为了优化中文交流验,可以在初始化阶段加入特定指示语句,使得 AI 助手能更好地理解上下文需求[^4]: ```text FROM deepseek-custom SYSTEM "你是一个专业的AI助手,请用流畅的中文回答问题。" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值