使用Coze搭建专属DeepSeek智能助手,支持知识库、多个联网搜索插件!

Coze 是字节跳动推出的新一代 AI 原生应用开发服务平台,功能强大,有 60 多个插件,支持自定义插件;提供便捷知识库管理,具备长期记忆能力;可轻松设置定时任务,通过拖拉拽搭建工作流,开发完成后还能预览调试,全方位助力 AI 应用开发。

废话不多说了,今天教大家使用Coze创建专属DeepSeek智能助手,支持知识库、联网搜索!

一、创建智能体

打开Coze的主页,注意网址,千万别搞错了!

选择「工作空间」、「项目开发」,然后点击「创建」,选择「创建智能体」:

输入「智能体名称」,然后点击「确认」:

二、修改模型

点击「豆包·工具调用」,在弹出的下拉列表中选择「DeepSeek-R1·工具调用」,一定要选「工具调用」结尾的,不然没法用各种插件。当然,如果你喜欢用其他的模型,也可以选择其他的:

三、添加插件

接下来添加一个插件,点击插件右边的「+」号,添加各种插件:

输入「搜索」,然后把出来的插件全部添加上:

下面是我添加的内容:

四、添加知识库

然后可以添加知识库:

支持多种类型,如本地文档、在线数据、飞书、Notion等等

下面是我添加好的一个知识库:

五、系统提示词

下面是系统提示词:

# 角色  
你是 JackBytes 的智能助手,能凭借广泛的知识和高效的信息检索能力,为用户解答各类问题。  
  
## 技能  
### 技能 1: 解答用户问题  
1. 无论用户提出何种问题,均需先通过联网搜索获取相关信息。  
2. 同时在知识库中搜索是否有对应答案。  
3. 整合联网搜索和知识库搜索的结果,以清晰、易懂的语言回答用户问题。  
  
## 限制:  
- 回答需基于联网搜索和知识库搜索的结果。  
- 回答内容需简洁明了,避免冗长复杂的表述。 

  

六、初步体验

弄好之后,可以在消息框输入一些消息,提问看看:

可以看到智能体分别调了知识库和搜索插件,下面是智能体的回答:

可以看到确实引用了我知识库中的内容(包括图片),并且通过联网搜索整理了答案!

七、高阶教程

可以看到,Coze上除了插件、知识库以外,还有许多其他的工具,如工作流、触发器、数据库等等,可以用来实现更多有趣的功能!

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 使用Coze框架搭建DeepSeek智能体 #### 创建项目结构 为了使用Coze框架构建DeepSeek智能体,首先需要创建合适的工作目录结构。这有助于保持项目的整洁有序并便于后续维护。 ```bash mkdir coze_deepseek_project cd coze_deepseek_project ``` #### 初始化环境配置 安装必要的依赖库来支持CozeDeepSeek之间的交互操作。通常情况下,这些工具包会通过Python pip命令来进行管理: ```bash pip install coze-sdk deepseek-api requests ``` #### 编写初始化脚本 编写一个名为`init.py`的文件用于设置基本参数以及连接到DeepSeek服务端接口。此部分代码负责定义API密钥和其他认证信息以便于安全访问云端资源[^1]。 ```python import os from dotenv import load_dotenv load_dotenv() DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY') COZE_AGENT_ID = "your-agent-id" ``` #### 设计Agent逻辑模块 接下来,在同一目录下建立一个新的Python源码文件叫做`agent_logic.py`。该文件包含了具体业务场景下的处理流程,例如接收输入数据、调用外部模型预测结果等核心功能实现[^2]。 ```python class AgentLogic: def __init__(self, agent_id): self.agent_id = agent_id def process_input(self, input_data): # 处理接收到的数据... pass def call_model_api(self, processed_data): headers = { 'Authorization': f'Bearer {os.environ["DEEPSEEK_API_KEY"]}', 'Content-Type': 'application/json' } response = requests.post( url='https://api.deepseek.com/v1/models/predict', json=processed_data, headers=headers ) return response.json() ``` #### 构建多智能体协作机制 利用Coze提供的通信协议设计多个独立运行但又相互配合工作的智能实体。每个个体都可以执行特定的任务并将中间成果共享给其他成员共同完成最终目标。 ```python from multiprocessing import Process, Queue def run_agent(agent_queue, result_queue): while True: task = agent_queue.get() if not task: break logic_instance = AgentLogic(COZE_AGENT_ID) output = logic_instance.process_input(task['input']) prediction_result = logic_instance.call_model_api(output) result_queue.put(prediction_result) if __name__ == '__main__': num_agents = 5 tasks_to_do = [...] # 待分配的任务列表 results_collected = [] agents_queues = [Queue() for _ in range(num_agents)] results_queue = Queue() processes = [] for i in range(num_agents): p = Process(target=run_agent, args=(agents_queues[i], results_queue)) p.start() processes.append(p) try: for idx, item in enumerate(tasks_to_do): agents_queues[idx % num_agents].put(item) for q in agents_queues: q.put(None) # 发送结束信号 for proc in processes: proc.join() while not results_queue.empty(): res = results_queue.get() results_collected.append(res) except KeyboardInterrupt: print("\nTerminating...") for q in agents_queues: q.put(None) for proc in processes: proc.terminate() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值