2025 年是 AI Agent 元年——这句话,在北京时间 3 月 6 日凌晨,得到了应验。
「这一刻,我们窥见了AGI到来的一丝光线。」
Monica.im 研发的全球首款通用型 ai Agent 产品「Manus」,今日重磅发布。
「Manus」是一个真正自主的 AI 代理,能够解决各类复杂多变的任务。与传统 AI 助手不同,Manus 弥合概念和执行的差距,当其他人工智能只是在生产想法时,Manus交付完整的任务成果。
Manus 采用 Multiple Agent 架构,运行方式与此前 Anthropic 发布的 Computer Use 类似,完全运行在独立虚拟机中。同时可以在虚拟环境中调用各类工具——**编写和执行代码、浏览网页、操作应用等,直接交付完整成果。**在这个架构中,每个代理可能基于独立的语言模型或强化学习模型,彼此通过 API 或消息队列通信。同时每个任务也都在沙盒中运行,避免干扰其他任务,同时支持云端扩展。每个独立模型都能模仿人类处理任务的流程,比如先思考和规划,理解复杂指令并拆解为可执行的步骤,再调用合适的工具。
换言之,通过 Manus 的这套多代理架构,它更像是由多个助理,通过协助的方式,分别完成检索资源、对接、验证信息是否有效等工作,来帮你完成整个工作流程——这实际上不仅像是你招了一个「实习生」,更像是直接当上了一个微缩版的「部门主管」。
Manus 真正的杀手锏,并非 Computer Use 中已经出现过的「AI Agent」概念,而是它「模拟人类方式工作方式」的能力。
什么是智能体?
AI Agent(人工智能智能体)是一种基于大模型的自主任务执行系统,能够通过感知环境、规划任务、调用工具并动态决策,实现复杂目标的闭环达成。其核心特征包括:
1. 自主性:无需人工干预即可拆解任务,例如用户提出“对比竞品差异并发送报告”时,Agent会自动搜索数据、调用模型生成报告、发送邮件;
2. 工具调用能力:整合Web搜索、数据库查询、代码执行等外部工具,形成“语言模型+行动机制”的协同体系;
3. 多模态交互:支持文本、语音、图像等多维度信息处理,例如智能家居Agent可通过语音指令调节室内环境;
4. 记忆机制:通过短期记忆(对话上下文)和长期记忆(知识库)实现持续学习。
如果将大模型比喻成人的“大脑”,智能体(AI Agent)则是一种能够自主感知环境、做出决策并执行动作的实体,可以理解为“数字代理人”。
智能体为AI带来哪些改变?
1
人机协作的新范例
通过推理、计划、记忆和行动的能力,人工智能代理解决了典型语言模型的关键限制。
2
多智能体AI系统:放大AI智能体的潜力
虽然单个人工智能代理可以提供有价值的增强功能,但人工智能代理真正的变革力量来自于它们与其他代理一起工作。这种多代理系统利用专门的角色,使组织能够自动化和优化单个代理可能难以单独处理的流程。
AI Agent和多智能体人工智能系统的主要好处:
①能力——AI Agent可以自动与多个工具进行交互,以执行独立语言模型无法实现的任务(例如,浏览网站,定量计算)。
②生产力——独立的法学硕士需要持续的人工输入和交互来实现预期的结果,而AI Agent可以根据单个提示来计划和协作执行复杂的工作流程,从而大大加快了交付的速度。
③自我学习——通过利用在预训练语言模型中通常不可用的短期和长期上下文记忆资源,AI Agent可以随着时间的推移迅速提高其输出质量。
④适应性——随着需求的变化,AI Agent可以推理和规划新的方法,快速引用新的和实时的数据源,并与其他代理协调和执行输出。
⑤准确性——作为自动化工作流程的一部分,多智能体AI系统的一个关键优势是能够使用与“创建者”交互的“验证者”代理来测试和提高质量和可靠性。
⑥智能——当专门从事特定任务的AI Agent一起工作时——每个AI Agent都使用自己的记忆,同时利用自己的工具和推理能力——新水平的机器驱动智能成为可能。
⑦透明度——多智能体人工智能系统通过展示智能体如何沟通和一起推理,提供对集体决策和建立共识过程的更清晰的看法,从而增强了解释人工智能输出的能力。
《Levels of AI Agents: from Rules to Large Language Models》中,作者把人工智能智能体也基于效用和强度分为以下级别:
-
L0—— 无人工智能,只有工具(具备感知能力)加上行动
-
L1—— 使用基于规则的人工智能
-
L2—— 用基于模仿学习(IL)/ 强化学习(RL)的人工智能替代基于规则的人工智能,并增加推理和决策功能
-
L3—— 用基于大型语言模型(LLM)的人工智能替代基于 IL/RL 的人工智能,另外设置记忆和反思模块
-
L4—— 在 L3 的基础上,促进自主学习和泛化
-
L5—— 在 L4 的基础上,添加个性(情感 + 性格)和协作行为(多智能体)
-
用例场景:个性化虚拟助手能够根据用户需求主动调整和优化行为。
Level 5: Superhuman AI (超人类AI)
-
技术手段:基于LLM与多智能体协作的AI,具备超越人类的推理、记忆、反思、自主学习和决策能力,情感、个性与协作能力也进一步发展。
-
性能:超越100%技能的成年人,展现出超人类智能。
-
能力:具备真正的数字化人格,能够在人类的角色中执行任务,确保安全与可靠性。
-
关键特性:AI能够在复杂的社交环境中代表用户完成任务,并与他人交互。
-
使用案例:能够代替用户进行交互,安全且可靠地完成复杂任务。
智能体在医疗行业应用?
12月5日,人工智能领域顶级期刊Nature Machine Intelligence发表了香港中文大学袁武教授,求佳宁博士,联名国际知名临床科学家,新加坡国家眼科中心与清华大学医学部黄天荫教授,英国前卫生部长,帝国理工大学外科学系Ara Darzi教授,数字医疗先驱,美国Scripps研究转化中心Eric Topol教授的评论文章 :“LLM-based Agentic Systems in Medicine and Healthcare”。
其中一种解决当前大语言模型局限的策略,便是将它们智能体化(Agentic LLM)。使用如链式思考(Chain-of-Thought)和基于文本强化学习的反思(Verbal RL-based Reflection)等策略对其思考和推理能力进行强化。一个基于大语言模型的智能体系统还可以通过外部模块来扩展原生大语言模型的能力,比如通过感知模块,记忆模块,和执行模块等分别来处理多模态数据信息, 记录长期的交互,和处理文本以外的任务。
因此,基于大语言模型的智能体系统,可以在大语言模型本身能力的基础上,扩展出新的能力,比如工具调用和群体智能。
LLM、传统Agent和基于LLM的Agent的特性。绿色 – 具备此特性;黄色 – 部分具备此特性;红色 – 很少或不具备此特性。
智能体的核心突破在于实现了"需求-技术-场景"的三元统一,为医疗AI的落地应用提供了一条切实可行的路径。
相较于当前医院盲目部署大模型(如DeepSeek),却仅停留在简单对话功能的现状。智能体技术通过系统化的构建方法,真正将AI能力深度融入临床诊疗和医疗管理场景,实现了从"技术展示"到"价值创造"的跨越。医院不妨从小切口切入场景,更容易做出匹配医院实际业务需求的智能体应用。
传统大模型部署和智能体应用的区别
智能体技术为医疗AI的落地应用提供了一条务实可行的路径。通过系统化的构建方法和科学的实施策略,医院能够在控制成本的同时,真正实现AI技术的临床价值转化。这种"轻量化创新"模式,不仅符合大多数公立医院的现实条件,也为医疗AI的普惠应用开辟了新的可能。
智能体有望成为医疗行业从业者(包括医护人员、管理者等)的得力助手,甚至可能改变医疗信息数据的存储和共享方式。
1.辅助决策:智能体可以通过多模态交互技术,为医护人员提供实时的医疗数据支持,帮助医生快速做出诊断和治疗决策。
2025年2月26日,由复旦大学附属中山医院联合上海科学智能研究院共同研发的「AI心医生」——观心大模型CardioMind beta版正式发布。
该款大模型的研发与训练在常规心血管疾病指南、文献输入的基础上,还输入了复旦大学附属中山医院心内科积累的数十万份电子病历和心内科医生思维,以及从「名院大查房」等品牌线上项目中提炼的疑难病例诊疗逻辑**。**
系统突破单一文本数据分析,实现了心电图、超声影像、实验室检查等多模态数据的整合推理。其包含就诊系统与问询系统,可以精准解析患者主诉,结合病史和检查数据,自动生成结构化电子病历,完成智能病史采集;进一步根据病史,结合多模态数据深度推理,生成智能辅助诊断;内置的心血管医学专科知识库,让其能够精准回答心血管专科问题,实现智能知识问询。
2.患者管理:临床医生和新的AI体系可能协同工作,共同管理患者的过去、现在、未来,协作下确保全面理解患者病情。
2023年医联开发出来第一款医疗大模型应用MedGPT-数字医生。通过快慢双系统搭建,以多专家智能体验证垂类模型的答案准确性,克服医疗大模型幻觉。
快慢双系统工作机制
为确保诊疗模型有效、安全,医联对医生智能体进行了持续验证。实验研究始于2023年6月,涉及四川大学华西医院多科室的10位三甲医院的主治医师,7 位主任医师参与,平均工作年限约为 12年,实验共招募100余名真实患者,形成了91份有效病例,样本具有一定的多样性和临床代表性,最终的实验结果显示,AI医生与三甲主治医生在比分结果上的一致性达到了96%。
MedGPT双盲实验设计
目前医联医生智能体已经得到多学科广泛应用,覆盖28个临床专科。
2025年1月8日,为加速推动人工智能技术在医疗领域的深度应用,促进深圳市医疗产业数字化转型与高质量发展,深圳市龙岗区社区健康服务管理中心携手中国首个医疗大模型备案企业医联集团,共同打造中国首个未来全科医生智能体。
深圳市龙岗区社区健康服务管理中心主任徐良玉(右) 医联集团基层医疗中心总经理李东伟(左)
3.在医疗数据管理方面,智能体将推动数据存储的去中心化和数据共享的高效化。通过分布式存储技术,医疗机构可以将数据分散存储在智能体的本地设备或云端,通过加密和权限管理确保数据安全。这种模式不仅提高了数据的安全性,还打破了传统医疗信息系统的数据孤岛,促进了医疗数据的高效共享。
Superhuman AI,能够协同医护进行交互,安全且可靠地完成复杂任务。
期待基于Manus的医疗智能体的诞生,
或许,未来已来。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓