Transformer是一种广泛用于自然语言处理和计算机视觉任务的深度学习架构,它自2017年由Vaswani等人在论文《Attention is All You Need》中提出以来,对自然语言处理(NLP)领域产生了深远的影响。在近两年来产生的大部分优秀大模型都基于Transformer架构,可见它已成为大语言模型开发的必备工具。
在过去一个月中,我集中学习并为各位同学介绍了Transformer的各个组成部件,本篇将进行一次学习总结,把之前关于Transformer的知识通过本篇串联起来,以帮助各位更好地理解Transformer框架。
01
Transformer架构的组件
Transformer的核心由 编码器-解码器结构 组成,但在某些应用中可能只使用编码器(如BERT)或解码器(如GPT)。Transformer的主要组件包括以下几个部分:
1. 输入嵌入层(Input Embedding)
功能:
-
将输入数据(如单词或词语)转化为固定维度的连续向量表示。
-
对应于自然语言任务中,将离散的单词或字符通过词嵌入(如Word2Vec、GloVe等)映射到稠密的向量空间中。
作用:
-
让模型可以处理自然语言或其他离散数据。
-
提供输入内容的语义信息。
2. 位置编码(Positional Encoding)
功能:
-
为输入序列中的每个位置添加位置信息。
-
Transformer架构没有循环(RNN)或卷积(CNN)的结构,因此无法直接获取序列中的位置信息。位置编码通过添加位置信息,使模型能够辨别序列中每个元素的位置。
实现:
- 使用固定的正弦和余弦函数(或可学习的参数)生成位置编码向量,并将其加到输入嵌入上。
作用:
- 允许模型捕获序列中元素的顺序信息。
3. 多头自注意力机制(Multi-Head Self-Attention)
功能:
计算序列中每个元素与其他所有元素之间的相关性(注意力权重)。
通过多个头(多个注意力机制)捕获不同的关系特征。
关键步骤:
(1)Query (Q), Key (K), 和 Value (V):
从输入嵌入中生成查询、键和值向量。
(2)注意力权重计算:
通过点积计算查询与键的相似度,并通过Softmax归一化得到注意力权重。
(3)加权求和:
使用注意力权重对值向量加权求和,得到输出。
(4)多头机制:
将多个头的结果拼接起来,并通过线性变换得到最终输出。
作用:
-
自注意力机制允许模型在全局范围内捕获序列中元素之间的依赖关系。
-
多头机制增强了模型的表达能力,使其能够关注不同维度的关系。
4. 前馈神经网络(Feed-Forward Network, FFN)
功能:
-
对每个位置的注意力输出进行独立的非线性变换。
-
通常由两个全连接层和一个非线性激活函数(如ReLU)组成。
作用:
-
提高模型的非线性表达能力。
-
为每个位置提供更复杂的特征表示。
5. 残差连接和层归一化(Residual Connection and Layer Normalization)
功能:
(1)残差连接:
在每个子层(自注意力和前馈神经网络)前后添加输入的跳跃连接。
(2)层归一化:
对每一层的输出进行归一化,稳定训练过程。
作用:
-
残差连接缓解梯度消失问题,帮助信息在深层网络中有效传递。
-
层归一化加速模型收敛,提高训练稳定性。
6. 编码器(Encoder)
功能:
-
对输入序列进行特征提取,生成上下文相关的编码表示。
-
编码器由多个相同的层堆叠而成,每层包括自注意力机制和前馈神经网络。
作用:
提取输入序列的全局特征和上下文关系。
7. 解码器(Decoder)
功能:
-
根据编码器的输出和目标序列的部分信息生成目标序列。
-
解码器由多个相同的层堆叠而成,每层包括三个主要部分:
(1)自注意力机制(Masked Self-Attention):确保解码器只能关注目标序列中当前和之前的位置。
(2)编码器-解码器注意力机制(Encoder-Decoder Attention):将解码器的状态与编码器的输出结合,捕获输入和输出之间的关系。
(3)前馈神经网络。
作用:
根据输入序列生成与之相关的输出序列(如翻译任务中的目标语言句子)。
8. 输出层(Output Layer)
功能:
-
将解码器的输出映射到目标词汇表的概率分布中。
-
通常通过一个全连接层和Softmax函数实现。
作用:
生成最终的输出结果(如预测的单词或分类标签)。
02
Transformer架构总结
Transformer架构的提出对深度学习领域具有深远的意义,主要体现在以下几个方面:
1. 序列建模的突破:在Transformer出现之前,循环神经网络(RNN)和长短时记忆网络(LSTM)是处理序列数据的主流方法。Transformer通过自注意力机制解决了长距离依赖问题,显著提升了序列建模的效果。
2. 并行计算:与RNN不同,Transformer可以并行处理输入序列的所有元素,这使得训练速度大幅提升,并且更容易利用现代硬件(如GPU和TPU)的计算能力。
3. 自注意力机制:Transformer引入了自注意力机制,使得模型能够根据上下文动态调整对输入序列中不同部分的关注程度,这提高了信息捕获的灵活性和效率。
4. 预训练和微调:Transformer的成功催生了预训练-微调的范式,例如BERT、GPT等模型。通过在大规模数据上进行预训练,模型可以学习到丰富的上下文信息,然后通过微调适应特定任务,从而在许多自然语言处理任务上取得了显著的性能提升。
5. 跨领域应用:虽然最初是为自然语言处理任务设计的,但Transformer架构已经扩展到计算机视觉、语音处理、图像生成等多个领域,推动了多模态学习和跨领域研究的发展。
6. 模型规模的扩展:Transformer架构的设计使得构建大规模模型变得可行,例如GPT-3等超大模型的出现,展示了深度学习在模型规模方面的潜力。
7. 研究和应用的活跃性:Transformer的提出激发了大量的研究和应用,推动了新的变体和改进的出现,如Vision Transformer、DeiT等,形成了一个丰富的研究生态。
总之,Transformer架构不仅改变了自然语言处理的格局,也对深度学习的研究和应用产生了重大的影响,促进了更广泛的技术进步与创新。
下表再次言简意赅地描述了Transformer各部分功能和作用,希望对各位加深Transformer框架的记忆有所帮助。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓