在自然语言处理(NLP)领域,模型微调(Fine-Tuning)是提升预训练模型在特定任务上表现的关键步骤。本文将详细介绍如何使用 Hugging Face Transformers 库进行模型微调训练,涵盖数据集下载、数据预处理、训练配置、评估、训练过程以及模型保存。我们将以 YelpReviewFull 数据集为例,逐步带您完成模型微调训练的整个过程。
一、数据集下载
1.1 获取 YelpReviewFull 数据集
YelpReviewFull 数据集是一个经典的情感分析数据集,包含了大量来自 Yelp 的评论。数据集从 Yelp Dataset Challenge 2015 数据中提取,主要用于文本分类任务,目标是预测评论的情感分数。数据集的评论主要用英语编写,适合进行情感分类研究。
1.2 数据集结构与实例
数据集包含两个主要字段:
-
text: 评论的文本内容。
-
label: 评论的情感标签,范围从 1 到 5。
例如,一个典型的数据点如下:
{
'label': 0,
'text': 'I got \'new\' tires from them and within two weeks got a flat...'
}
1.3 数据拆分
数据集的总量为 700,000 条记录,其中包括 650,000 个训练样本和 50,000 个测试样本。在实际操作中,我们通常会将数据集随机拆分为训练集和测试集。例如,我们可以选择 130,000 个训练样本和 10,000 个测试样本用于模型训练和评估。
1.4 下载数据集代码
可以使用 Hugging Face 的 datasets 库来下载数据集:
from datasets import load_dataset
# 下载 YelpReviewFull 数据集
dataset = load_dataset("yelp_review_full")
二、数据预处理
2.1 数据预处理步骤
下载数据集后,我们需要对文本数据进行预处理,以便于模型的训练。预处理包括将文本转换为模型可以接受的输入格式。通常,我们使用 Tokenizer 对文本进行编码,并进行填充(padding)和截断(truncation)。
以下代码展示了如何使用 BERT Tokenizer 对数据集进行预处理:
from transformers import AutoTokenizer
# 加载预训练的 BERT Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def tokenize_function(examples):
"""
使用 Tokenizer 对文本进行编码,并进行填充和截断
"""
return tokenizer(examples["text"], padding="max_length", truncation=True)
# 对数据集进行预处理
tokenized_datasets = dataset.map(tokenize_function, batched=True)
2.2 数据抽样
在训练过程中,为了更好地控制训练过程,我们可以从数据集中抽样出一部分数据进行测试。例如,选择 1000 个样本进行小规模训练:
# 从数据集中抽样 1000 个训练样本
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
# 从数据集中抽样 1000 个测试样本
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
三、训练评估指标设置
3.1 微调训练配置
在微调模型之前,我们需要配置训练参数,包括加载模型和设置训练超参数。以下代码展示了如何加载 BERT 模型,并为情感分类任务配置输出标签数量:
from transformers import AutoModelForSequenceClassification
# 加载 BERT 模型,并设置标签数量为 5(情感评分从 1 到 5)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
3.2 训练超参数配置(TrainingArguments)
我们使用 TrainingArguments 来配置训练超参数。这些参数包括训练批次大小、训练轮数、日志记录频率等。以下是一个示例配置:
from transformers import TrainingArguments
model_dir = "models/bert-base-cased-finetune-yelp"
# 配置训练参数
training_args = TrainingArguments(
output_dir=model_dir, # 模型保存路径
per_device_train_batch_size=16, # 每个设备的训练批次大小
num_train_epochs=5, # 训练轮数
logging_steps=100 # 每 100 步记录一次日志
)
四、训练器基本介绍
4.1 训练指标评估
Hugging Face 提供了 evaluate 库来计算模型的评估指标。例如,我们可以使用准确率(accuracy)作为评估指标。以下代码展示了如何使用 evaluate 库计算模型的准确率:
import numpy as np
import evaluate
# 加载准确率指标
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
"""
计算准确率
"""
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1) # 将 logits 转换为预测值
return metric.compute(predictions=predictions, references=labels)
4.2 训练器(Trainer)
Trainer 类是 Hugging Face 提供的用于训练和评估模型的工具。我们需要将模型、训练参数、数据集以及计算指标的函数传递给 Trainer:
from transformers import Trainer
# 实例化 Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset, # 训练数据集
eval_dataset=small_eval_dataset, # 验证数据集
compute_metrics=compute_metrics # 计算指标的函数
)
五、实战训练
5.1 训练过程中的指标监控
为了监控训练过程中的评估指标,我们可以配置 TrainingArguments 中的 evaluation_strategy 参数,以便在每个 epoch 结束时报告评估指标:
# 更新训练参数配置
training_args = TrainingArguments(
output_dir=model_dir,
evaluation_strategy="epoch", # 每个 epoch 结束时进行评估
per_device_train_batch_size=16,
num_train_epochs=3,
logging_steps=30 # 每 30 步记录一次日志
)
5.2 开始训练
使用 Trainer 类的 train 方法开始训练模型:
# 开始训练
trainer.train()
5.3 使用 nvidia-smi 监控 GPU 使用
在训练过程中,使用 nvidia-smi 命令监控 GPU 的使用情况,以确保训练过程的高效进行:
watch -n 1 nvidia-smi
六、模型保存
6.1 保存模型和训练状态
训练完成后,我们需要保存模型及其训练状态,以便后续加载和使用:
# 保存训练后的模型
trainer.save_model(model_dir)
# 保存训练状态
trainer.save_state()
通过 trainer.save_model 方法保存模型,您可以使用 from_pretrained() 方法重新加载模型。trainer.save_state() 方法保存训练状态,便于后续继续训练或评估。
七、完整代码汇总
下面是包含所有步骤的完整代码示例:
# 导入必要的库
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
import numpy as np
import evaluate
# 数据集下载
dataset = load_dataset("yelp_review_full")
# 数据预处理
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def tokenize_function(examples):
"""
使用 Tokenizer 对文本进行编码,并进行填充和截断
"""
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# 数据抽样
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
# 模型加载与训练配置
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
model_dir = "models/bert-base-cased-finetune-yelp"
training_args = TrainingArguments(
output_dir=model_dir,
per_device_train_batch_size=16,
num_train_epochs=5,
logging_steps=100
)
# 指标评估
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
"""
计算准确率
"""
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
# 实例化 Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics
)
# 开始训练
trainer.train()
# 监控 GPU 使用
# 使用命令行工具: watch -n 1 nvidia-smi
# 保存模型和训练状态
trainer.save_model(model_dir)
trainer.save_state()
八、总结
本文详细介绍了使用 Hugging Face Transformers 库进行模型微调训练的完整流程,包括数据集下载、数据预处理、训练配置、评估、训练过程和模型保存等步骤。希望这些信息能帮助您更好地进行模型微调,提高模型在特定任务上的表现。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓