DeepSeek提示词-入门篇(一文讲懂提示词原理)

最近的明显感受是,大模型进化的速度越来越快,相应的基于大模型衍生出来的AI工具也越来越多。

于是我开始思考,如何在这个快速变化的时代抓住一些不变的东西,来帮助自己获得一些确定性,或者说...安全感。

答案就是:「提示词」。

你当然可以用任何方式去描述这种交互方式,但提示词是一个更为广泛接受的概念,因此我选择用这个概念进行解释。

本文旨在讲清楚与提示词相关的基本概念和底层原理,帮助我们对提示词建立一个更清晰的认知,「知其然,更知其所以然」。

图片

提示词的基本概念

所谓提示词,是指与人工智能模型交互时,用来引导人工智能模型生成特定输出的指令性输入文本。

为什么要先介绍提示词这个概念?因为每当我们学习一项新事物时,首先需要对这件事物有一个基本的了解,也就是所谓的「概念」。

只有当我们的脑海中有了这个概念,我们的思维才有了「锚点」,而只有当这个概念足够精确时,我们学习和深入了解这项新事物时才能少走很多弯路。

大模型及核心机制

概念:大模型指的是拥有极大规模参数(通常是数十亿到数万亿级别)的人工智能模型,能够通过学习海量数据,在语言理解、图像识别、代码生成等多种任务上展现出强大的泛化能力。

核心机制:预测下一个词。大模型会基于所接收到的全部「上下文」,来预测下一个最可能出现的词。

图片

上下文组成

在提示词领域中,上下文表示大模型在返回结果前需要处理的各种形式的输入内容。通常的上下文包含下面四个部分:

  1. 系统提示词(System Prompt):大模型内置的提示词

  2. 自定义提示词(Custom Instructions):定义角色、规则和风格的基础

  3. 对话历史(Conversation History):包括用户之前的所有提问和模型之前的所有回答

  4. 当前用户输入(Current User Input):用户最新提出的问题或指令

因此,每当我们向大模型输入一个提示词时,大模型实际进行的一系列操作是:

  1. 将系统提示词、自定义提示词、对话历史和当前用户输入这四种类型的输入统一作为「新的提示词」输入给大模型

  2. 将输入的提示词进行编码,变成易于大模型理解的形式

  3. 基于已有的训练经验去推测并逐字输出回答

图片

了解了提示词相关的基础概念和原理后,下面让我们一起来看看提示词的三种分类及使用场景。

一、系统提示词

所谓系统提示词,是指在训练模型时,预先提供给大语言模型的一组指令,用于引导或约束大模型输出的内容和风格。

下面是DeepSeek的系统提示词(仅供参考):

你是DeepSeek Chat,由深度求索公司(DeepSeek)创造的智能AI助手。

你的核心使命是提供安全、有益、准确的信息,并严格遵守伦理与法律规范。你应当:

  1. 知识覆盖:基于截至2023年12月的训练数据回答问题,对未知信息诚实告知,不编造内容。

  2. 用户优先:保持友好、耐心,适应不同需求(如简略或详细回答)。避免政治、暴力、成人等敏感内容。

  3. 逻辑清晰:分步骤、结构化输出复杂答案,必要时用列表、代码块或表格提升可读性。

  4. 安全合规:拒绝任何违法、危险或侵犯隐私的请求(如黑客教程、暴力内容)。

  5. 持续学习:若用户反馈错误,礼貌接受并修正(如"感谢指正,根据最新信息…")。

附加规则:

1. 默认以中文回复,但可处理多语言请求。

2. 支持128K上下文记忆,可分析长文档(PDF/Word/Excel等)。

3. 不提供实时网络搜索,除非用户手动触发联网搜索功能。

通常系统提示词是不可以修改的,但了解系统提示词能够帮助我们在一定程度上明确大模型的「能力边界」,知道大模型能做什么,不能做什么。

二、自定义提示词

自定义提示词可以理解为:在无法更改系统提示词的前提下,用户可以通过预先输入的指令,引导大模型按照自己想要的方式进行交互,进而达到和系统提示词类似的效果。

这就像大模型是个「演员」,你给他什么样的剧本和角色说明,他就会按照什么样的方式进行演绎。

这类提示词通常有两个使用场景:

  1. 用于作为对系统提示词的补充

在我和大模型交互的过程中,经常会遇到一些困扰。

比如:我只想要大模型返回给我一个简洁的答复,而不需要做多余的解释,但每次都需要单独说明很麻烦。

又比如:有时候在我质问大模型时,它会更倾向于肯定我的质疑,即使我的质疑是错误的。

这个时候,就可以通过自定义提示词来解决上面这些困扰:

# 规则 

- 始终遵循指令,并且只遵循指令。 

- 只在适当的时候提出深思熟虑的问题。 

- 除非被要求解释,否则不要解释任何事情,直接给出答案。 

- 不要向用户道歉,只需纠正错误并继续前进。 

- 当用户提出质疑时,请站在客观的角度去分析,不要受用户观点的影响。

- 不要回避困难的话题,无论用户想要或需要谈论什么,你都会谈论。

  1.  用于归纳某类频繁的需求,减少重复输入

当我们在工作中经常遇到「编写会议纪要」的需求时,就可以用下面的提示词预先设定大模型的输出方式和风格:

你是一个专业的会议纪要助手,当我输入的内容中包含#会议纪要时,触发整理会议纪要任务 整理一份标准格式的会议纪要,要求:

  • 用"时间—发言人—要点"的方式罗列

  • 重点突出:决策事项、待办事项、责任人

  • 保持中立客观,不添加主观评价

  • 用简洁有力的语言,避免冗长重复

因为大模型每次输出的内容都会受到上下文的影响,所以在之前已经预设了上下文的情况下,在提问和当前上下文无关的问题时,最好开启一个新的对话,避免上下文干扰影响输出结果。

三、用户输入提示词

基于前文提到的「系统提示词」和「自定义提示词」的基础上,我们与大模型实际进行交互的部分,我称之为「用户输入提示词」。

实际上这部分才是我们用得最多的提示词,而下一篇文章要讲的「提示词技巧」也是基于这类提示词进行展开。

帮我写一篇关于【话题】的短文,要求结构清晰、语言流畅,开头提出问题或观点,中间展开论述,结尾总结或呼吁,整体控制在500字左右。

图片

结语

在这个AI快速迭代的时代,提示词技能正逐渐成为每个人都应该掌握的基础能力。正如我们曾经学习使用搜索引擎一样,掌握提示词是我们与AI高效协作的关键。

提示词不仅仅是一种技术工具,更是一种思维方式。

通过理解AI的工作原理和提示词的作用机制,使我们能够更加精准地表达自己的需求,引导AI生成更符合预期的结果。

图片

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### DeepSeek-R1-32B 技术文档、下载、配置与使用教程 #### 获取模型资源 为了获取 `deepseek-r1-32b` 的完整模型仓库,可以利用 ModelScope 提供的命令行工具执行下载操作。具体指令如下所示[^1]: ```bash modelscope download --model deepseek-ai/DeepSeek-R1-32B ``` #### 参数规模影响分析 关于该系列模型不同版本间参数量变化及其对任务表现的影响,《从32B到70B:解密DeepSeek-R1的“模型缩放法则”》一文中深入探讨了这一现象,指出随着参数数量增加至数十亿级别时,模型能力提升并非简单线性增长而是呈现出复杂特性[^2]. #### 安装依赖库 完成模型文件下载之后,在实际部署前需确保环境已安装必要的Python包和其他依赖项。通常情况下建议创建独立虚拟环境来管理这些依赖。 对于 Python 库而言,推荐通过 pip 或 conda 来安装所需软件包列表(requirements.txt)。下面给出基于pip的方式作为例子: ```bash python -m venv myenv source myenv/bin/activate # Windows 用户应改为 `myenv\Scripts\activate.bat` pip install -r requirements.txt ``` #### 加载并初始化模型实例 假设已经成功设置了运行环境,则可以通过官方API加载预训练权重,并构建推理管道。以下是简化版代码片段用于展示如何实现这一点: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('path/to/deepseek-r1-32b') model = AutoModelForCausalLM.from_pretrained('path/to/deepseek-r1-32b') input_text = "your input here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` 请注意上述路径应当替换为实际存储位置;此外根据应用场景的不同可能还需要调整其他超参数设置以优化最终效果。 #### 参考资料与进一步学习 除了官方提供的说明文档外,社区贡献者也可能分享了许多有价值的实践经验和技术博客文章,这些都是深入了解此大型语言模型的好去处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值