最近的明显感受是,大模型进化的速度越来越快,相应的基于大模型衍生出来的AI工具也越来越多。
于是我开始思考,如何在这个快速变化的时代抓住一些不变的东西,来帮助自己获得一些确定性,或者说...安全感。
答案就是:「提示词」。
你当然可以用任何方式去描述这种交互方式,但提示词是一个更为广泛接受的概念,因此我选择用这个概念进行解释。
本文旨在讲清楚与提示词相关的基本概念和底层原理,帮助我们对提示词建立一个更清晰的认知,「知其然,更知其所以然」。
提示词的基本概念
所谓提示词,是指与人工智能模型交互时,用来引导人工智能模型生成特定输出的指令性输入文本。
为什么要先介绍提示词这个概念?因为每当我们学习一项新事物时,首先需要对这件事物有一个基本的了解,也就是所谓的「概念」。
只有当我们的脑海中有了这个概念,我们的思维才有了「锚点」,而只有当这个概念足够精确时,我们学习和深入了解这项新事物时才能少走很多弯路。
大模型及核心机制
概念:大模型指的是拥有极大规模参数(通常是数十亿到数万亿级别)的人工智能模型,能够通过学习海量数据,在语言理解、图像识别、代码生成等多种任务上展现出强大的泛化能力。
核心机制:预测下一个词。大模型会基于所接收到的全部「上下文」,来预测下一个最可能出现的词。
上下文组成
在提示词领域中,上下文表示大模型在返回结果前需要处理的各种形式的输入内容。通常的上下文包含下面四个部分:
-
系统提示词(System Prompt):大模型内置的提示词
-
自定义提示词(Custom Instructions):定义角色、规则和风格的基础
-
对话历史(Conversation History):包括用户之前的所有提问和模型之前的所有回答
-
当前用户输入(Current User Input):用户最新提出的问题或指令
因此,每当我们向大模型输入一个提示词时,大模型实际进行的一系列操作是:
-
将系统提示词、自定义提示词、对话历史和当前用户输入这四种类型的输入统一作为「新的提示词」输入给大模型
-
将输入的提示词进行编码,变成易于大模型理解的形式
-
基于已有的训练经验去推测并逐字输出回答
了解了提示词相关的基础概念和原理后,下面让我们一起来看看提示词的三种分类及使用场景。
一、系统提示词
所谓系统提示词,是指在训练模型时,预先提供给大语言模型的一组指令,用于引导或约束大模型输出的内容和风格。
下面是DeepSeek的系统提示词(仅供参考):
你是DeepSeek Chat,由深度求索公司(DeepSeek)创造的智能AI助手。
你的核心使命是提供安全、有益、准确的信息,并严格遵守伦理与法律规范。你应当:
知识覆盖:基于截至2023年12月的训练数据回答问题,对未知信息诚实告知,不编造内容。
用户优先:保持友好、耐心,适应不同需求(如简略或详细回答)。避免政治、暴力、成人等敏感内容。
逻辑清晰:分步骤、结构化输出复杂答案,必要时用列表、代码块或表格提升可读性。
安全合规:拒绝任何违法、危险或侵犯隐私的请求(如黑客教程、暴力内容)。
持续学习:若用户反馈错误,礼貌接受并修正(如"感谢指正,根据最新信息…")。
附加规则:
1. 默认以中文回复,但可处理多语言请求。
2. 支持128K上下文记忆,可分析长文档(PDF/Word/Excel等)。
3. 不提供实时网络搜索,除非用户手动触发联网搜索功能。
通常系统提示词是不可以修改的,但了解系统提示词能够帮助我们在一定程度上明确大模型的「能力边界」,知道大模型能做什么,不能做什么。
二、自定义提示词
自定义提示词可以理解为:在无法更改系统提示词的前提下,用户可以通过预先输入的指令,引导大模型按照自己想要的方式进行交互,进而达到和系统提示词类似的效果。
这就像大模型是个「演员」,你给他什么样的剧本和角色说明,他就会按照什么样的方式进行演绎。
这类提示词通常有两个使用场景:
-
用于作为对系统提示词的补充
在我和大模型交互的过程中,经常会遇到一些困扰。
比如:我只想要大模型返回给我一个简洁的答复,而不需要做多余的解释,但每次都需要单独说明很麻烦。
又比如:有时候在我质问大模型时,它会更倾向于肯定我的质疑,即使我的质疑是错误的。
这个时候,就可以通过自定义提示词来解决上面这些困扰:
# 规则
- 始终遵循指令,并且只遵循指令。
- 只在适当的时候提出深思熟虑的问题。
- 除非被要求解释,否则不要解释任何事情,直接给出答案。
- 不要向用户道歉,只需纠正错误并继续前进。
- 当用户提出质疑时,请站在客观的角度去分析,不要受用户观点的影响。
- 不要回避困难的话题,无论用户想要或需要谈论什么,你都会谈论。
-
用于归纳某类频繁的需求,减少重复输入
当我们在工作中经常遇到「编写会议纪要」的需求时,就可以用下面的提示词预先设定大模型的输出方式和风格:
你是一个专业的会议纪要助手,当我输入的内容中包含#会议纪要时,触发整理会议纪要任务 整理一份标准格式的会议纪要,要求:
用"时间—发言人—要点"的方式罗列
重点突出:决策事项、待办事项、责任人
保持中立客观,不添加主观评价
用简洁有力的语言,避免冗长重复
因为大模型每次输出的内容都会受到上下文的影响,所以在之前已经预设了上下文的情况下,在提问和当前上下文无关的问题时,最好开启一个新的对话,避免上下文干扰影响输出结果。
三、用户输入提示词
基于前文提到的「系统提示词」和「自定义提示词」的基础上,我们与大模型实际进行交互的部分,我称之为「用户输入提示词」。
实际上这部分才是我们用得最多的提示词,而下一篇文章要讲的「提示词技巧」也是基于这类提示词进行展开。
帮我写一篇关于【话题】的短文,要求结构清晰、语言流畅,开头提出问题或观点,中间展开论述,结尾总结或呼吁,整体控制在500字左右。
结语
在这个AI快速迭代的时代,提示词技能正逐渐成为每个人都应该掌握的基础能力。正如我们曾经学习使用搜索引擎一样,掌握提示词是我们与AI高效协作的关键。
提示词不仅仅是一种技术工具,更是一种思维方式。
通过理解AI的工作原理和提示词的作用机制,使我们能够更加精准地表达自己的需求,引导AI生成更符合预期的结果。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓