什么是大模型?大模型框架全解析:常用框架盘点与对比,一文掌握核心知识!

什么是大模型框架

大模型框架是指用于训练、推理和部署大型语言模型(LLMs)的软件工具和库。这些框架通常提供了高效的计算资源管理、分布式训练、模型优化和推理加速等功能,以便更好地利用硬件资源(如GPU和TPU)来处理庞大的数据集和复杂的模型结构。
大模型框架的优点

  • 高效性:通过优化计算和内存管理,这些框架能够显著提高训练和推理的速度。
  • 可扩展性:支持分布式训练,可以在多个GPU或TPU上运行,适用于大规模数据集和复杂任务。
  • 灵活性:提供丰富的API和工具,使得研究人员和工程师可以方便地进行定制化开发。 易用性:通常具有良好的文档和社区支持,降低了使用门槛。

常见的大模型框架
1、Ollama
2、vLLM
3、LightLLM
4、llama.cpp
5、LocalAI
6、适用昇腾AI处理器的框架
7、fastllm
8、DeepSpeed-MII
9、TensorRT-LLM
10、其他。LM Studio、xinference、Colossal-AI等

Ollama

Ollama 是一个专注于简化大规模机器学习模型开发的框架。它提供了一系列工具来帮助开发者轻松地定义、训练和部署大型语言模型。
优点:
• 提供了简洁的API,易于上手。
• 支持多种硬件加速选项,如GPU和TPU。
• 内置了许多预训练模型,方便快速开始实验。
缺点:
• 对一些高级功能支持有限,需要手动实现。
• 高并发性能受限,更新中

vLLM

vLLM 是一个专注于高效推理的大模型框架。它通过优化内存管理和计算资源分配,实现了极高的推理效率。
优点:
• 极高的推理速度,适合实时应用。
• 并发速度极快,优于ollama,受到并发数影响较小
• 优化了内存使用,可以在较小的硬件配置上运行大型模型。
• 支持多种分布式计算模式,提高了可扩展性。

LightLLM

LightLLM以其轻量级设计、易于扩展和高速性能而著称。 LightLLM 利用了众多备受推崇的开源实现的优势,包括但不限于 FasterTransformer、TGI、vLLM 和 FlashAttention。
优点:极致的性能,比此前的vLLM更加快速。①三进程异步协作,②动态批处理,③FlashAttention,④TokenAttention,⑤高性能Router
llama.cpp
llama.cpp 的主要目标是在本地和云端的各种硬件上以最少的设置和最先进的性能实现 LLM 推理。
llama.cpp基于C++,llama.cpp的主要目标是能够在各种硬件上实现LLM推理,只需最少的设置,并提供最先进的性能。提供1.5位、2位、3位、4位、5位、6位和8位整数量化,以加快推理速度并减少内存使用。①请求槽,②动态批处理,③CPU/GPU混合推理

Local AI

不同于前两个转为大模型部署设计,LocalAI可以再本地部署运行 LLMs、生成图像、音频等模型,具有更多的拓展性。
优点:更灵活的使用,使用场景更加广泛

适用昇腾AI处理器的框架

MindFormers(MindSpore Transformers)使用MindSpore 框架,套件华为自家提供的一个构建大模型训练、微调、评估、推理、部署的全流程开发套件,提供业内主流的Transformer类预训练模型和SOTA下游任务应用,涵盖丰富的并行特性。期望帮助用户轻松的实现大模型训练和创新研发。MindSpore Transformers套件基于MindSpore内置的并行技术和组件化设计,具备如下特点:提供预置SOTA权重自动下载及加载功能;支持人工智能计算中心无缝迁移部署;

ModelLink旨在为华为昇腾芯片上的大语言模型提供端到端的解决方案, 包含模型,算法,以及下游任务。当前 ModelLink 支撑大模型使用的功能如下:使用加速特性(加速算法+融合算子)、基于昇腾芯片采集Profiling数据

MindSpore Serving是一个易于使用的推理框架,旨在帮助 MindSpore 开发者在生产环境中高效部署在线推理服务。当用户使用MindSpore完成模型训练 后,导出MindSpore模型,即可使用MindSpore Serving创建该模型的推理服务。目前支持的特性:模型并行部署、通过服务端发送事件的Token流、自定义模型输入、静态/连续(continuous)批处理、通过npu进行后采样、PagedAttention、
MindIE 是昇腾提供的新的大模型推理解决方案,支持使用MindSpore和Pytorch训练的模型进行推理加速及部署。MindIE 作为一个模型推理引擎,提供了针对大语言模型和SD模型特定的优化。加速库底层算子主要由Ascend C编写,基于Ascend底层高性能算子库/TBE算子库实现

fastllm

fastllm纯c++实现,便于跨平台移植,可以在安卓上直接编译。ARM平台支持NEON指令集加速,X86平台支持AVX指令集加速,NVIDIA平台支持CUDA加速,各个平台速度都很快就是了。支持浮点模型(FP32), 半精度模型(FP16), 量化模型(INT8, INT4) 加速.支持多卡部署。支持GPU + CPU混合部署。

DeepSpeed-MII

DeepSpeed-MII 功能包括阻塞 KV 缓存、连续批处理、动态 SplitFuse、张量并行性和高性能 CUDA 内核,以支持 LLMs 的快速高吞吐量文本生成,例如 Llama-2-70B、Mixtral (MoE) ) 8x7B 和 Phi-2。 v0.2 的最新更新添加了新的模型系列、性能优化和功能增强。与 vLLM 等领先系统相比,MII 现在的有效吞吐量提高了 2.5 倍。DeepSpeed-MII除了语言模型之外,我们还支持加速文本到图像模型,例如稳定扩散。

TensorRT-LLM

TensorRT-LLM 是一个易于使用的 Python API,用于定义大型语言模型 (LLMs) 并构建包含最先进优化的 TensorRT 引擎,以高效地执行推理在 NVIDIA GPU 上。 TensorRT-LLM 包含用于创建执行这些 TensorRT 引擎的 Python 和 C++ 运行时的组件。它还包括一个用于与 NVIDIA Triton 推理服务器集成的后端;服务于LLMs的生产质量体系。使用 TensorRT-LLM 构建的模型可以在从单个 GPU 到具有多个 GPU 的多个节点(使用张量并行和/或管道并行)的各种配置上执行。
在这里插入图片描述
在这里插入图片描述

模型OllamavLLMLightLLMllama.cppLocalAI适用昇腾框架fastllmDeepSpeed-MIITensorRT-LLM
编写语言GopythonpythonC/C++C++/GopythonC++pythonC++
支持的加速算法引用llama.cpp1、量化2、动态批处理,3、CPU/GPU混合推理,AMD加速
4、自定义 CUDA 内核支持1、PagedAttention(改进的KV cache)2、连续动态批处理,③量化GPTQ/AWQ/SqueezeLLM等。4、优化的 CUDA 内核1、动态批处理,2、FlashAttention,3、TokenAttention(改进PagedAttention)4、高性能Router。
5、张量并行1、量化2、动态批处理,3、CPU/GPU混合推理,AMD加速
4、自定义 CUDA 内核支持
5、为本地服务,没提供多少并行支持1、模型压缩、剪枝、量化
2、CPU/GPU加速
3、为本地服务,没提供多少并行支持张量并行、流水线并行、序列并行、重计算、分布式优化器等多种加速算法和融合算子AMD/X86/NVIDIA加速。量化、GPU + CPU混合部署1、阻塞 KV 缓存2、连续批处理、 3、SplitFuse(Continous Batching变种)4、张量并行性和高性能 CUDA 内核,1、Inflight Batching(Continous Batching变种)2、单个GPU/多 GPU加速3、使用张量并行/管道并行
4、量化
支持的模型自有库+导入自有库+导入仅自有库自有库+导入导入仅自有库自有库仅自有库(仅8种)自有库
最快的推理速度一般极快一般极快极快
其他

其他的存在使用人数较少、维护不足等问题。
LM Studio并发性能好,适合企业应用
xinference是国内推出的本地部署框架
Colossal-AI除了LLA外,提供Sora等多模态支持

总结

不同的大模型框架各有其优势与劣势,选择合适的框架需要根据具体的应用场景、硬件配置以及开发需求来决定。Ollama适合快速实验与原型设计;vLLM则应对多并发有更好的性能。推荐使用VLLM,版本更新频繁,社区相对活跃,生态更为完善,推理速度满足需求,如果有多模态和其他需求,LocalAI更为合适。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值